

The development of the Separated Function RFQ accelerator at Peking University

J.E.Chen, X.Q.Yan#, J.X.Fang, Z.Y.Guo,Y.R.Lu

State Key Lab of Nuclear Physics and Technology (IHIP), Peking University, 100871, China

July,2008

Peking University

Outline

- What is Separated Function RFQ?
- SFRFQ Prototype cavity
- RF power test
- Preparation for Beam test
- Future plan

RFQ accelerator in the world

LEDA RFQ

IH RFQ

SNS RFQ

KOMAC RFQ Cold Model 北京大学重离子物理研究所 ISAC RFQ

INFN SRFQ2

ISR RFQ -1000

Ions:Freq:Energy ::I peak.:Duty Factor ::Q0:P:RF Power:

N+、O+ 26MHz 1 MeV 2mA 16.7 % 3400 522 kΩ.m 24 KW

RFQ-1000 operated at 26 MHz

A proton RFQ operated at 600 MHz

Acceleration efficiency is limited in a RFQ accelerator

✓A+F≈1 (A~0.5 , F~ 0.5)

Some novel accelerators

- The drift tube structure has higher acceleration efficiency
- Introducing accelerating gaps into RFQ is attractive for some applications.

RFI/RFD

SP-RFQ

H-RFQ in ANL

Seperated Function RFQ(SFRFQ)

Field sparking is a Challenge

Asymetrical quadruple

a_x>a_y

SFRFQ prototype

The prototype cavity will be tested as a postaccelerator for RFQ-1000

Principal parameters of prototype

	SFRFQ Prototype
Ion species	O +
F(MHz)	26.07
W _{in} (keV)	1000
W _{out} (keV)	1620
Length(cm)	105
Diameter(cm)	70
V _o (kV)	70
Duty factor	1ms/6ms

Beam dynamics design

Assembly

Tank cover

Prototype cavity

Power coupler

Capacitance tuner

 $E_z{}^2\left(MV/m\right){}^2$

RF Power test

RF Power test

two standard γ rays of ²⁴¹Am 59.5keV and ¹³⁷Cs 661.661keV

RF power test results

Power	V _o	ρ
kW	kŇ	kΩ m
16.2	65.81	276.2
20.7	73.16	265.7
23.4	78.06	269.8
28.8	86.22	266.6
33.3	91.02	257.1

Maximum surface electric field is about 2.1 Kilpat

Cooling

Preparation for the beam test

5mA Oxygen ECR IS

Summery

- full RF power test proved the feasibility of SFRFQ structure.
- The RF efficiency is not optimized for the prototype cavity: $\rho=270 \text{ k}\Omega \text{ m}$; it's effective shunt impedance is about $26M\Omega/m$.
- Both RFQ and SFRFQ can be excited by the similar structure (Split Ring), so they can be coupled and excited inside one cavity.

Future plan:

Beam testUpgrade RFQ-1000

RFQ+SFRFQ combined Injector

SFRFQCODEv1.0

北京大学重离子物理研究所