

Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

Status of the EC Funded HOM Damped Normal Conducting Cavity

Ernst Weihreter / BESSY for the HOM Damped Cavity Project Team

- Why HOM Damped Cavities for 3rd Generation SR Sources?
- Basic Concepts for HOM Damping and Existing Cavity Designs
- The EC Funded Normal Conducting HOM Damped Cavity Project: Design, Status, Essential Results
- Technical Problems and Solutions
- Conclusions

ESSY Why Do We Need HOM Damped Cavities for SR Sources?

Figure of Merrit: Photon Beam Brilliance

3rd Generation SR Sources: use undulators implemented in a low emittance lattice

Minimize $\epsilon \sim \gamma^2 \theta^3 < H >$

- small $\theta \rightarrow$ many lattice cells
- ♦ complex lattices → many magnets per cell

Low emittance is an expensive ingredient !

Avoid emittance / brilliance degradation

Narrow band HOM impedances of the cavities excite coupled bunch oscillations if Fourier components of I_{b} coincide with HOMs

- Emittance increase due to transverse oscillations
- Large eff. energy spread ∆E/E due to longitudinal oscillations

EPAC 2008, June 23. - 27., Genova, Italy

Ernst Weihreter / BESSY

- Detuning of the dominant HOM
 - by changing cavity temperature
 - by a second tuner
- Higher harmonic rf system for Landau damping
- Use broad band feedback systems

All these methods have their specific limitations

Damp all HOMs in the cavities in a broadband way by 2 - 3 orders of magnitude

Two Concepts for Broadband HOM Damping:

Waveguides

Beam Tubes

$$1/I_{threshold} \propto Z_{tot} = N_c \left(\frac{R}{Q_0}\right)_{HOM} Q_{ext}$$

- ♦ Minimize number of cavities N_c
- ♦ Minimize (R/Q₀)_{HOM}

 $f_{rf} < f_{cutoff} < f_{HOM}$

- \rightarrow Trade off between
- effective coupling to HOMs
- Minimum coupling to fundamental mode

Superconducting Cavities

HOM Damping via Beam Tubes:

CESR-B Cavity

- Nb sheet material
- ♦ 2 cylindrical HOM loads
- rectangular waveguide input coupler, 500 kW
- cooling capavity: 100 W at 4.2 K

CLS/Canada

Cavity used at

NSRRC/Taiwan SLS/China DIAMOND/England

- Nb sputtered on Cu
- ♦ 4 coaxial loop type HOM couplers
- 2 coaxial input couplers 200 kW each
- cooling capacity: 100 W at 4.5 K, 20 l/h LHe

SOLEIL Cavity (Design based on LEP cavity)

2008, June 23. - 27., Genova, Italy

Ernst Weihreter / BESSY

KEK Photon-Factory Cavity

T. Koseki, Y. Kamiya, M. Izawa Rev. Sci. Instrum. 66,1995, p.1926

f(TM010) = 500 MHz

fc (TE11) = 1.26 GHz
fc (TM01) = 1.64 GHz

4 cavities in operation at KEK-PF

Ernst Weihreter / BESSY

2008, June 23. – 27. , Genova, Italy

ASP / Toshiba Cavity

J. Watanabe et al., EPAC 2006 , p.1325

fc (TE11) = 1.41 GHz fc (TM01) = 1.84 GHz

2 cavities in operation at ASP / Australia

Improvement by addition of 3 coaxial dampers

Room Temperature Cavities for Meson Factories

Daphne cavity, 368.2 MHz, 250 kV, 2 MΩ, L=1.9m

KEK ARES cavity, 509 MHz, 500 kV, 1.7 $M\Omega$

4 tapered rectangular waveguides with coax transitions, rf windows, external loads

Coaxial notch filters

Low fundamental mode R/Q to enhance Robinson damping

Low shuntimpedance, large insertion length \rightarrow Meson factory cavities not necessarily ideal also for SR sources

Ernst Weihreter / BESSY

Room Temperature Cavities, cont.

PEP-II RF cavity raft assembly

PEP II Cavity:

- R = 3.8 MΩ, spherical shape
- thermal power capability of 150 kW
- ♦ 3 rectangular HOM waveguides, AIN absorbers
- ♦ insertion length L = 1.5 m.
- circular Al₂O₃ rf window for 500 kW
- complex mechanical design, using e-beam welding, vacuum brazing, galvano-forming

Cavity used for SPEAR 3

Ernst Weihreter / BESSY

Cavities developed at BINP / Novosibirsk

VEPP-2000 cavity

172.1 MHz, 120 kV, 0.23 $M\Omega$

Cavity for the DUKE-FELL ring

178.5 MHz, 730 kV, 3.46 $M\Omega$

Performance parameters of HOM damped storage ring cavities ($R_s = V_{cy}^2/2P_{cy}$, L insertion length, R_{\parallel} max. longitudinal impedance, R_{\perp} max. transverse impedance)

NC Cavities	f ₀ MHz	V _{cy} kV	R _s MΩ	Q ₀	P _{cy} kW	L m	f _{HOM} MHz	Max. R	f _{HOM} ⊥ MHz	Max. R⊥
PEP II	476.	850.	3.8	32400	103.	~1.5	1295.	1.83	1420.	$\frac{k\Omega}{m}$
DAPHNE	368.2	250.	2.	33000	16.	1.9	863.	259.	_	_
ARES	509.	500.	1.75	118000	72.	~1.1	696.	1.35	989.	10.
VEPP2000	172.1	120.	0.23	8200	29.	0.95	246.0	0.4		<10.
DUKE-2	178.5	730	3.46	39000	77	3.16	-	-	-	-
KEK-PF	500.	785	3.45	39500	90.	1.4	791.	1000.	792.	5100.
ASP/Toshiba	500.	750	3.8	40400	75.	1.0	790.	25.	803.	8500.
BESSY	500.	735.	3.4	29600	80.	0.5	670.	11.	1072.	54.
SC Cavities		V _{cy} MV	R _s /Q Ω							
CESR	500.	2.5	44.5	-	-	2.9	2253.	0.18	715.	32.
SOLEIL	352.	2.5	45.	-	-	3.65	699.	2.1	504.	49.

Ernst Weihreter / BESSY

BESSY HOM Damped Cavity

Ernst Weihreter / BESSY

Tapered Circular WG to Coaxial Transition

Coaxial 7/8" EIA ceramic vacuum window with commercial 50 Ohm load, 3 kW

low power model

Ernst Weihreter / BESSY

Simulation Models

Numerical optimisation: cavity length / diameter, nose cone shape, waveguide position and cut-off were varied one by one

MAFIA 3D TIME DOMAIN MODELS

~ 10⁶ mesh points 1.5 days cpu time ~18* 10⁶ mesh points 4 weeks cpu time

Today, with improved computer speed and software tools: ~ 1 day cpu time

EPAC 2008, June 23. - 27., Genova, Italy

Ernst Weihreter / BESSY

Impedance Spectrum Calculations

- Evaluate wake field of a bunch in time domain
- ◆ Fourier transform of wake field
 → impedance vs frequency

Ernst Weihreter / BESSY

Low Power Measurements

Ernst Weihreter / BESSY

First Beam Tests in DELTA / Dortmund University

CBM beam spectra: (longitudinal case)

$$f_{\mu m}^{\pm} = n f_{rf} \pm (\mu f_0 + m f_s)$$

 μ coupled bunch mode number

Prototype cavity installed in the DELTA ring / Dortmund University

No cavity driven CBMs excited in DELTA

R. Heine et al., EPAC2006, p.2856

Ernst Weihreter / BESSY

Impedance Spectra and Threshold Impedances

Longitudinal Impedance

Transverse Impedance

Ernst Weihreter / BESSY

- constant cross-section
- wedge shaped ferrite absorber

Simulations and time domain reflectrometry measurement

Fabrication of Ferrite Absorber Elements

Callenge: Bonding of ferrite on copper

Solution adopted after tests with different technologies:

- ◆ Large difference in thermal expansion
 → small ferrite tiles (19.6 x 16.6 mm)
- NiZn ferrite tiles soldered on "soft" copper
- Non-eutectic SnAg(0.1%) solder material, T-melt = 295 °C
- Contact layer: sputtering of Ti and Cu
- Quality test of bonding process:
 - Exposition with high intensity IR radiation
 - Homogeniety of ferrite surface temperature checked with IR camera

IR Test: Thermal power density up to 14 W/cm² \rightarrow safety margin of ~ 3

Ernst Weihreter / BESSY

Metrology Light Source Cavity

 Cavity with homogenous ferrite loaded WG built by ACCEL (f-cutoff = 625 MHz, 30% less fundamental mode power absorbed in the ferrites)

SSY

 Bead pull measurements to verify the expected HOM impedances

- TM011 impedance of 10.8 kΩ not confirmed by simulations (MWS/CELLS, GdfidL/ESRF) so far
- ◆ Decision at CELLS to use the cavity for ALBA
 →Attempt to reduce TM011 impedance by a change of cut-off from 625 MHz to 615 MHz

Ernst Weihreter / BESSY

Measurements at CELLS with pre-series ALBA cavity (615 MHz WG cut off frequency):

- TM011 impedance still ~ 12 kOhm
- Attempt to get more insight: Closing the gaps provisionally by rf-springs reduces TM011 impedance to 5 kOhm
- \rightarrow high TM011 impedance is related with the gap

- Gap size 1mm, comparable with minimum mesh size of numerical model
- \rightarrow simulations fail to provide quantitative explanation

Results of low power measurements

Resonance Frequency	499.515	MHz
Tuning Range	2	MHz
Shunt Impedance @ RT	3.4	MΩ
Max.Longitudinal HOM Impedance	10.8	kΩ
Max. Transverse HOM Impedance	60	kΩ/m
Waveguide cut-off	625	MHz
Coupling Factor for TM010 (adjustable)	0.5 - 8	

RF conditioning at high power

- After baking at 130 °C for 5 days:
 → base pressure 3 10 -¹⁰ mb
- ◆ RF conditioning up to 40 kW cw in only 2 days: → good quality of inner cavity surfaces with respect to roughness and contamination
- No serious multipacting levels

Beam commissioning

- 200 mA accumulated at 100 MeV, 175 mA accelerated to 630 MeV
- Preliminary studies indicate: no cavity driven longitudinal and transverse MBO
- \rightarrow J. Feikes et al., EPAC 2008

Installation in the MLS ring

 However: Vacuum problem at 45 kW at the WG flanges related with a temperature incresase in the ridge area

 \rightarrow Operation power limit so far: 40 kW

Ernst Weihreter / BESSY

Power Limitation: Heating of Flange in the Gap Region

IR image of flange region

Measurement of temperature distribution on flange circumference: Δ T-max = 28°C @ 40 kW. Max. differential axial deformation: 0.03 mm

→ CF-flange deforms due to non-homogenous temperature distribution, causing the vacuum problem

Magnetic rf field (MWS) calculation (CELLS) on inner cavity surfaces ~ sqrt (power density)

Gaps have not been included in the initial numerical model calculations because of mesh size limitations

Ernst Weihreter / BESSY

Thermal Simulations

Power in gap region: 340 W

 Δ T-max on cavity CF-flange: 28 °C @ 40 kW T-max (hot spot): 160 °C

 $\Delta T\text{-max}$ on cavity CF-flange: 14 °C @ 40 kW T-max (hot spot): 62 °C

Scaling to 80 kW power: ΔT-max on cavity CF-flange: 28°C T-max (hot spot): 95 °C

 \rightarrow safe operation up to at least 80 kW rf power is expected

 \rightarrow modification implemented in the series cavities for CELLS and for BESSY II, power tests at CELLS in fall 2008

Ernst Weihreter / BESSY

• Gap causes both problems

SSY

- high TM011 impedance
- local heating in gap region
- But allows simple engineering solution to connect waveguide and cavity body

◆ Gap cannot be avoided by shortening the ridge
 → degradation of HOM damping efficiency

Concept how the gap could be avoided

- machining of the WG ridge as part of the cavity body
- special gasket following inner contour of the WG (e.g. VAT-seal technology)

 ♦ higher complexity and cost
 → option to extend thermal power capability beyond 80 kW

- HOM damped cavities are mandatory for state of the art high brilliance storage ring SR sources
- HOM impedances can conceptually be reduced down to a level where most existing synchrotron light sources can operate below threshold for multi-bunch instabilities
- The HOM damped cavity presented has demonstrated
 - max. transverse impedance < 60 k Ω /m
 - max. long. Impedance < 11 k Ω with potential for further reduction to ~ 5 k Ω
 - fundamental mode shuntimpedance ~ 3.4 $M\Omega$
 - demonstrated operation up to 40 kW (520 kV), expected safe operation up to at least 80 kW (730 kV) after modification
- The cavity is in routine operation in the MLS ring, six cavities will start operation at CELLS / Spain in fall 2008, and four cavities will be installed in BESSY II. At ESRF work is in progress for a 352 MHz cavity based conceptually on a similar design.
- Lessons learnt: Even with the most advanced EM field codes the influence of small gaps cannot be simulated properly because of mesh size limitations. Such gaps, however, can have a strong influence on the cavity performance.
- Conceptional solution to avoid the gap: option for operation beyond the expected thermal limit above ~ 80 kW, however with higher complexity and cost.

Thanks

EC Funded Project Collaboration:

BESSY / Germany
Daresbury Lab / England
DELTA / Dortmund University, Germany
National Tsing Hua University / Taiwan
Important Support from:
J. Borninkhof, V. Dürr, F. Marhauser, S. Pande, E. Weihreter
M. Dykes, C. Hodgkinson, P, McIntosh, A. Moss
R. Heine, T. Weis
H.L. Cheng, K. R. Chu, P. Z. Rao, J. Sung, Y. C. Tsai, C. Wang/NSRRC, W. C. Wong, C. C. Yang

P.v. Stein

G. Corniani

CELLS RF-GroupM. Langlois, F. Perez, P. SanchezESRF RF-GroupN. Guillotin, J. Jacob, V. Serriere

Companies:

- + ACCEL
- Zanon

Project Funded by:

- Tax payers of all EC countries and Taiwan via
 - European Community
 - Ministry for Education and Science, Germany
 - Deutscher Akademischer Austauschdienst, DAAD, Germany
 - NSC National Science Council / Taiwan

DELTA Beam Spectra

Figure 4: CBM spectra of a damped DORIS-cavity at 1.5 GeV and mean currents of 97 (red), 129 (green) and 132 mA (blue), also with this resonator CBM 21-22 and 53-55 is appearing.

Figure 3: CBM spectra at 1.5 GeV and mean currents between 123.3 and 86.3 mA (top to bottom in legend) with the EU-cavity

	BESSY II	ELETTRA	ALBA	ALS	SLS	ANKA	NSRRC		
σ[mm]	4.8	5.4	4.6	9.	4.	9	7.5		
k _{II} [V/pC]	0.7	0.64	0.72	0.5	0.8	0.5	0.52		
E [GeV]	1.7	2.	3.	1.5	2.4	2.5	1.5		
h	400	432	448	328	480	184	200		
Multi-bunch									
I-beam [mA]	400	300	400	400	500	400	240		
n-bunch	260	432	360	328	480	184	200		
Q-bunch [nC]	1.23	0.6	1.0	0.8	1.	0.8	0.24		
P-HOM [W]	530	207	360	160	400	160	60		
Singel-bunch									
I-beam [mA]	30	-		2 x 20	-	-	25		
Q-bunch [nC]	24	-		2 x 6.6	-	-	10		
P-HOM [W]	504	-		66	-	-	66		

$$P_{HOM} = Q_{bunch}^{2} (1/T_{bunch}) k_{//}(\sigma)$$

$$k_{\prime\prime\prime}(\sigma) = \sum_{n=1}^{\infty} \frac{\omega_n}{2} (\frac{R}{Q})_n \exp(-\omega_n^2 \sigma^2)$$

Max HOM power per cavity: $P_{long} = 600 W$ $P_{trans} = 600 W$ $P_{f0} = 800 W$ $P_{total} = 2 kW$

Test power density on ferrite: 14 W/cm² Total ferrite area : 480 cm²

 \rightarrow P_{max} = 6.7 kW per cavity factor of 3 safety margin

Cylindrical vs Spherical Shape

transverse impedance [kΩ/m]

EPAC 2008, June 23. – 27., Genova, Italy

Ernst Weihreter / BESSY

Tapered vs Homogenious Waveguides

Fig. 2.4: Longitudinal coupling impedances of the EU cavity after replacing the upper homogenous by a tapered waveguide.

Ernst Weihreter / BESSY