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Let me start with the classic paper:
E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958)

Basic idea:

• Define vector 

• Use 2x2 transport matrices  M(1→2) to describe particle 
motion.  M(1→2) is calculated by multiplying matrices element 
by element from position 1 to position 2.

It is important to recognize that all the physics are contained in 
the transport matrices. Our job is to somehow extract maximum 
information from them. Question, is how.



Courant and Snyder’s solution is to introduce a set of (now well-known) auxiliary 
functions: 

α(s), β(s), γ(s), ψ(s)     and     η(s), η’(s)

Our goal is to calculate physical quantities (e.g. closed orbit distortions, 
momentum compaction factor, the betatron and synchrotron tunes, the x-y
coupling coefficient, the rms beam sizes, bunch length, energy spread…).

Note that this long list does not contain the auxiliary functions themselves. 
These functions themselves are not physical quantities.

In the Courant-Snyder tradition, we have been doing accelerator physics 
in three steps:

Input contains 
all physics

Auxiliary step.
No physics here.

Physics results



However, questions arise:

• Formalism applies only to 1-D, uncoupled case. To establish Step 3, we 
use textbook formulae, expressed in terms of the auxiliary functions. In 
actual applications, what replaces these formulae when the 1-D condition 
breaks down?

• The auxiliary functions are not physical, is Step 2 really necessary?



What’s needed:  to calculate the beam's physical parameters directly from the
transport matrices (6x6 with general coupling) without resorting to auxiliary 
functions. 

This is a very practical need.

• How to extend Courant-Snyder is an old topic. Many have tried. 
• This talk concerns one such effort in 1979-81

J. Appl. Phys. 50(2), 595 (1979)
Nucl. Inst. Meth. 180, 29 (1981)

• Other important efforts:
F. Ruggiero, E. Picasso, L. Radicati, Ann. Phys. 197, 439 (1990)
D. Barber, K. Heinemann, H. Mais, G. Ripkin, DESY-91-146 (1991)
K. Ohmi, K. Hirata, K. Oide, Phys. Rev. E 49, 751 (1994)
E. Forest, Phys. Rev. E 58, 2481 (1998)
A. Wolski, Phys. Rev. ST Accel. Beams 9, 024001 (2006)
B. Nash, Ph.D. Thesis, Stanford University (2006)
etc.



Courant-Snyder representation is not unique

Not being unique   
=>  Something there must only be an artifact.

Courant-Snyder representation (familiar): Betatron phase

Normalized 
coordinates

But this elegant formalism is not unique. Another possible representation 
(equally elegant) is

An alternative 
betatron phase

Alternative normalized 
coordinates



Had we chosen the alternative representation, textbooks will all look 
different today. And yet, both representations give identical final 
results.

For example, a FODO cell:

Courant-Snyder
ψ(s)

Alternative

ψ(s) looks 
very
different!

_



Replacing the auxiliary functions by eigenvectors

Replace the 3-step Courant-Snyder scheme by

Eigenvalues and eigenvectors contain all information contained in a 
transport matrix (6x6, coupled)  =>   No loss of information in Step 2.

In contrast, some information is lost if one uses Courant-Snyder 
representation to coupled systems.

I shall call this replacement scheme SLIM, following the name of an 
early computer code. 



Calculating physical quantities using eigenvectors

Define

First step is to calculate the 6 eigenvalues: 
and the 6 eigenvectors: 

Motion described by 6x6 transport matrices.

Physical quantities are then obtained from these eigenvalues and eigenvectors 
(the new set of auxiliary functions).



EXAMPLES

Tunes:
The 6 eigenvalues give 3 eigen-mode tunes νk, k=I,II,III.

Closed orbit:
Calculation gives a 6-D closed orbit.

Coupling effects:
Skew quadrupoles, crab cavities, solenoids, sextupoles.

Radiation damping constants:
Modifying transport matrices for rf cavities and dipole magnets to include 
radiation damping effects, the 6 eigenvalues become

where αk are the eigen-mode radiation damping constants. This replaces the 
conventional way (valid when uncoupled) using the partition number D.



Beam sizes and shapes:
The 21 beam distribution moments are given by

Eigenvectors instead 
of H function

Three eigen-emittances.
Reduce to εx,y,z if 1-D uncoupled.



Spin polarization

In SLIM, we aim for a single computing framework that covers a range of situations:

• Betatron motion and synchrotron motion
• Coupled case and uncoupled case
• Near resonances and away from resonances
• Spin motion and orbital motion
• Orbital resonances and depolarization resonances

=>  The original SLIM program had only 1000 lines.

Two additional 
coordinates for spin

Define



It is now straightforward to extend it one step more, from 3-D (x,y,z) to 
4-D (x,y,z + spin). Transport matrices become 8x8. More physical 
quantities are computed:

Spin tune:

The 4-th pair of eigenvalues gives the spin precession tune νIV



Depolarization time and equilibrium level of polarization:
These are obtained by analogy between spin motion and orbital motion:

It is now straightforward to extend it one step more, from 3-D to 4-D 
dynamics to include spin motion. Transport matrices become 8x8. More 
physical quantities are computed:

Spin tune:

The 4-th pair of eigenvalues gives the spin precession tune νIV



Summary

After 50 years, the Courant-Snyder formalism remains as elegant 
and unshakable as ever. 

To extend beyond 1-D applications, an eigen-analysis has been 
proposed to treat the general coupled cases in multi-dimensions, 
including the dimension of spin.
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