Review of Accelerators for Radioactive Beams

Yorick Blumenfeld

Introduction : In-flight and ISOL facilities
II In-Flight Projectile Fragmentation

Current status
Future : FAIR and RIBF

III ISOL

Current Status
The European Roadmap
The Intermediate Generation
EURISOL

We acknowledge the financial support of the European Community under the FP6 "Research Infrastructure Action - Structuring the European Research Area" EURISOL DS Project Contract no. 515768 RIDS . The EC is not liable for any use that can be made of the information contained herein.

The Nuclear Chart and Challenges

Production Methods

ISOL : Isotope Separation On-Line

High intensity, good optical quality, Low energy, diffusion and effusion

In-Flight Fragmentation

High Energy, all species, low intensity, poor beam qualities

THE EUROPEAN PLAN for the LONG TERM FUTURE

NuPECC recommends the construction of 2 'next generation' RIB infrastructures in Europe, i.e. one ISOL and one in-flight facility. The in-flight machine, FAIR, would arise from a major upgrade of the current GSI facility, while EURISOL would constitute the new ISOL facility

Current Fragmentation Facilities

Facility	Location	Driver	Primary Energy	Typical intensity	Fragment separator
GANIL	Caen, France	2 separated sector cyclotrons	Up to 100A MeV	³⁶ S 10 ¹³ pps ⁴⁸ Ca 2 10 ¹² pps	SISSI + ALPHA
G S I Gesellschut für Schwerionenfo	Darmstadt, Germany	Linac + Synchrotron	Up to 2A GeV	10 ¹⁰ ppspill	FRS
S NSCL	East Lansing, USA	2 coupled superconduct ing cyclotrons	Up to 200A MeV	⁴⁰ Ar 5 10 ¹¹ pps	A1900
RARF RIKEN	Tokyo, Japan	Ring cyclotron	Up to 100A MeV	⁴⁰ Ar 5 10 ¹¹ pps	RIPS

RIKEN RI Beam Factory (RIBF)

Intense (80 kW max.) H.I. beams (up to U) of 345AMeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS Operation since 2007

World's First and Strongest K2600MeV Superconducting Ring Cyclotron

400 MeV/u Light-ion beam 345 MeV/u Uranium beam

World's Largest Acceptance 9 Tm Superconducting RI beam Separator

~250-300 MeV/nucleon RIB

Next Generation Facility: FAIR at GSI

FRIB/ISF : The US project at the NSCL/MSU

Today's ISOL facilities

Facility	Location	Driver	Post accelerator	Final energy	Main beams available
REX-ISOLDE	CERN, Geneva	PS booster; 1.4 GeV protons	REX LINAC	0.3A-3A MeV	Large variety including fission frag.
SPIRAL Ganil	Caen, France	GANIL coupled cyclotrons	CIME cyclotron	2.7A-25A MeV	He, Ne, Ar, Kr, N, O, F
TRIUMF/ISAC	Vancouver, Canada	500 MeV proton cyclotron	RFQ + SC LINAC	0.2 – 5A MeV	Large variety up to Lu
ORNL/HRIBF	Oak Ridge, Tn	ORIC 50 MeV protons	25 MV Tandem	~10A MeV	Light ions and fission frag.

The European ISOL Road Map

- Vigorous scientific exploitation of current ISOL facilities : EXCYT, Louvain, REX/ISOLDE, SPIRAL
- Construction of intermediate generation facilities: SPIRAL2, HIE-ISOLDE, SPES
- Design and prototyping of the most specific and challenging parts of EURISOL in the framework of EURISOL Design-Study (20 Labs, 14 Countries, 30M€)

European ISOL Facilities

Facility	Driver	Beam Power	Number of fissions	Post- accelerator	Energy
SPIRAL-II GANIL	LINAC Deuterons 40 MeV HI 15A MeV	200 kW	>5 1013	Cyclotron CIME	2A-25A MeV
HIE-ISOLDE	PS booster Protons 1.4 GeV	10 kW	10 ¹³ + spallation	Linac REX	0.8A-10A MeV
SPES Legnaro	Commercial cyclotron p 40 MeV	8kW	1013	Linac ALPI	10A MeV
EURISOL EURISOL Design Study	Superconducting CW LINAC p 1GeV	5 MW	>10 ¹⁵ + spallation	Superconducting LINAC	150A MeV

SPIRAL2 DRIVER ACCELERATOR Baseline Configuration: October 2006

beam	p+	D+	ions	ions
Q/A	1	1/2	1/3	1/8
I (mA) max.	5	5	1	1
W _o min. (Mev/A)	2	2	2	2
W _o max. (Mev/A)	33	20	14.5	8.5
CW max. beam power (KW)	165	200	44	48

Total length: 65 m (without HE lines) D*: ECR ion source Heavy lons: ECR lon Source Slow and Fast Chopper RFQ (1/1, 1/2, 1/3) & 3 re-bunchers 12 QWR beta 0.07 (12 cryomodules) 14 QWR beta 0.12 (7 cryomodules) 14 QWR beta 0.12 (7 cryomodules) 1 KW Helium Liquifier (4.2 K) Room Temperature Q-poles 30 Solid State RF amplifiers (10 & 20 KW)

T. Junquera, GANIL 08/02/08

New baseline scheme with extended capabilities

- 2 injection lines for H,D, He and A/q=2 ions
- SARAF scheme up to 60 MeV/q
- IPNO scheme from 60 to 140 MeV/q
- CEA scheme from 140 to 1000 MeV/u
- cw beam splitting at 1 GeV (1 line 4 MW + 3 lines 100 kW)
- Total length of the linac: ~240 m 4 MW H-**B** stripper 1 GeV/o Elliptical RFO HWR 3-SPOKE H-.D-704 MHz 176 MHz 352 MHz 176 MHz β**=0.09** β**=0.03** β**=0.47** β=0.65 β=0.78 100 kW 1.5 MeV/u β**=**0.15 60 140 MeV/c H+. ³He²⁺ H+,D+,) MeV/q foil ³He⁺⁺ >200 MeV/a stripper D, A/q=2 10 36 31 63 97

EURISOL task 7 : Alberto Facco LNL-Legnaro

1 GeV Multiple Extraction

- •3 splitting stations
- •4 simultaneous users for cw proton beams:
 - $\bullet 1 \times 4 \ \text{MW}$
 - •3 \times 0 \div 100 kW (continuously adjustable)
- •Unique ability of EURISOL at present

Spoke cavities development @ IPN Orsay

•2 prototypes at β =0.15 and β =0.35 fabricated and successfully tested at 4.2 K.

•This technology is the basis for the 3-Spoke required by the Driver linac

vision Accélérateu

Spoke cavity tuner

EURISOL Task 8: Sébastien Bousson – IPN Orsay

Design of the post-accelerator

SPIRAL-2 philosophy : Smoothest beam dynamics (regular FDO lattice, low number of β -sections), Modular solution and simple cryostats, Separated vacuum (safety with FP), Warm focusing (easier for alignement), Possibility to insert diagnostics at each period, ease of tuning

Main technical requirements:

Only 2-gap cavities (high q/A acceptance) Max. accelerating fields 7.8 MV/m Nominal operation for A/Q between 4 and 8

¹³² Sn ²⁵⁺	Section 1	Section 2	Section 3	Section 4	TOTAL
Cavity Freq.	88.05 MHz	88.05 MHz	176.1 MHz	264.15 MHz	5
Cavity β	0.065	0.14	0.27	0.385	-
# cav./ cryo	1 QWR	3 QWR	8 HWR	14 SPOKE	-
# cavities	15 cav	27 cav	80 cav	154 cav	276 cav
Length	17.9 m	26.1 m	59.0 m	103.8 m	206.8 m
Ouput energy range	-	2.1 – 19.9 MeV/A	9.3 – 62.5 MeV/A	20.0 – 150.0 MeV/A	2.1 – 150.0 MeV/A

EURISOL Task 6 : Marie-Hélène Moscatello - GANIL

New Target Concept

Y. Kadi, T2-MMW L. Tecchio Task 4

Joint EURISOL-EURONS Town Meeting

Helsinki. 17-9-2007

Beta Beam Study

Ion choice: ⁶He and ¹⁸Ne Based on existing technology and machines Study of a beta-beam implementation at CERN

Once we have thoroughly studied the EURISOL scenario, we can "easily" extrapolate to other cases. EURISOL study could serve as a reference.

EURISOL task 12 : Michael Benedikt - CERN

Yields of fission fragment after acceleration (best numbers for all)

Thanks to Marek Lewitowicz

Possible Locations?

The Design Study will investigate the implementation and cost of EURISOL in these 3 hypotheses

Time scales

Summary and Conclusions

- We are today at a turning point in RIB science with the study and construction of a new generation of dedicated facilities offering higher intensities and more exotic nuclei.
- There is a coherent plan for future development :
 - Fragmentation with RIBF and FAIR (and FRIB in USA?)
 - Intermediate generation ISOL facilities: SPIRAL2, HIE-ISOLDE, SPES
 EURISOL
- Superconducting LINACs are the cornerstones of the ISOL projects due to their flexibility, modularity and small beam losses
- Cyclotrons and synchrotrons are necessary to reach the high energies needed for in-flight facilities.

RIB Physics Reach

