Coordinated Global R&D Effort for the ILC SC Linac Technology

Akira Yamamoto KEK and ILC-GDE, PM for SCRF

To be presented in EPAC-08, Genoa, June 23, 2008

First of all

I would thank the EPAC program committee for providing me (us) me (us) the opportunity to present this talk.

This talk has been prepared with "global effort" for ILC-GDE GDE SCRF in participation and cooperation of

- DESY, INFN, CEA-Saclay, LAL, CERN, Industries, in Europe,
- **FNAL/ANL, SLAC, J-LAB, Cornell, (LLN), Industries in Americas,**
- KEK, Kyoto, IUAC, RRCAT/BARC, TTIF, VECC, IHEP, Beijing, Ningxia, Ningxia, PAL, KNU, PNU, Industries, in Asia

I sincerely thank their kindest **cooperation** and various advices. advices.

Outline

Introduction R&D Status Progress from Europe, Americas, and Asia Plan for Technical Design Phase Cavity Gradient, Plug-compatible Engineering Global Effort **Summary**

Reference Design Report published, 2007

SC linacs (11 km) operating at 31.5 MV/m for 500 GeV

Injector centralized

- Circular damping rings for e- and e+, and Undulator-based e+ source
- Single IR with 14 mrad crossing angle

Why Superconducting?

Advantages:

- Small RF surface resistance
- Large Q
- Low frequency
- Large aperture and
- Small beam loss

Further work required includes:

- Cryomodule (thermal insultation)
- Cryogenics,
- "E" Gradient to be improved

8 or 9 cavities in a cryomodule

"E" in Progress at TTF toward XFEL at DESY

• Progress of averaged field gradient in cryomodule at TTF, DESY,

ILC operation :
<31.5> MV/m
R&D Status :
<~ 30> MV/m
meeting XFEL requirement

Toward Technical Design Report

ILC Research and Development Plan for the Technical Design Phase

Release 2

June 2008

ILC Global Design Effort Director: Barry Barish

Prepared by the Technical Design Phase Project Management

Project Managers:

Marc Ross Nick Walker Akira Yamamoto

Reference Design, 2007 >> Technical Design Phase, 2008-2012

Goals of ILC-SCRF R&D

Field Gradient

- **35 MV/m** for cavity performance
- **31.5 MV/m** (10 % lower) for operational gradient
 - to build two x 11 km SCRF main linacs

Cavity & Cryomodule Integration with

- Plug-compatible concept to:
 - Allow variety in component design
 - Encourage to extend innovative/creative work in R&D phase
 - Motivate practical 'Project Implementation' in "global effort"

System Engineering/Tests

- Beam Acceleration
 - with an accelerator unit of one RF-unit cotaining 3 crymodule
 - to demonstrate that the whole complex functions

Why Field Gradient Limited in SC Cavity ?

In fabrication

In integration

Field Emission

due to high fieldaround "Iris"

Quench

 caused by surface heating from dark current or magnetic field penetration.
 around "Equator"

Contamination

during assembly

Cavity R&D Efforts Required

Fabrication: Forming and welding (EBW) Surface Process: Chemical etching Electro-polishing Cleaning • Ethanol, Detergent, Micro-EP High pressure rinsing Inspection/Tests: Optical Inspection (warm) Tests and thermometry (cold)

Progress in Cavity Basic R&D 2007-2008

Europe

- "Gradient" improved (<31.5> MV/m) with Ethanol rinse (DESY):
- Large-grain cavity (DESY)
- Surface process with baking in Ar-gas (Saclay)
- Industrial (bulk) EP demonstrated (<36> MV/m) (DESY)

Americas

- Basic research and surface process (> <30> MV/m) (Americas)
- Large-grain cavity (<36> MV/m) (J-lab)
- Surface process facility (Fermilab/ANL)
- Vertical (cold) test facility with thermometry (Fermilab)

Asia

- Optical inspection much improved (KEK)
- Fabrication R&D (India/Fermilab), (China, Korea/KEK)
- Surface-process R&D (India/KEK)

DESY 4th: Field Emission Analysis

Cavity gradient shifted to High Gradient by 'ethanol rinse', excepting for "lowest two" due to different reason

Industrial EP at DESY/Plansee

The average gradient, 36 MV/m with AC115-118

Americas' Cooperation on Cavity Processing & Test

Mar 8, 2008

DOE Budget Retreat

Basic Research at J-Lab and Cornell

J-Lab (2006-2008)

- Nine 9-cell cavities process and tested
 - six of them reached >> 30 MV/m
- Large-grain cavity
 - Pionner work

Cornell

- Re-entrant cavity
 - Single-cell study for best shape
- Basic research
 - Highly systematic study

No.	Co- work	Cavity Name	No. Tests	E-max (MV/m)
1	Fnal/Accel	Accel-6	Test-4	38
2	Fnal/Accel	Accel-7	Test-2	42
3	Fnal/AES	AES-2	Tes-t4	32
4	Fnal/Accel	Accel-8	Test-3	31
5	KEK/MHI	Ichiro-5	Test-4	36
6	Fnal/Accel	Accel-11	Test-1	30

Surface Process Study on Low-loss Type Cavity JLab - KEK

Ultrasonic Cleaning with degreaser very effective method to to reduce field emission

A result from Accel – JLab-FNAL Co-Effort Accel-6: Q_o vs Gradient

We learn:

- Accel: fabrication quality
- **JLab:** processing quality
- **FNAL:** evaluation and coordination
- Evidence: long-distance cavity transport is possible possible without loss of performance, if the cavity is is evacuated and sealed.

9-cell Test Results in the Americas Region

First 9-cell electro-polishing performed at ANL, May 2008, (FNAL/ANL/JLab cooperation)

- Accel cavity A7 electro-polished; <removal> ~27 microns at ANL.
- Upon completion of low-pressure rinsing, cavity was filled with ultra-pure water and shipped to JLab.
- Ultrasonic cleaning, high-pressure rinsing, and assembly complete at J-Lab.
- **Testing scheduled at FNAL**, in June

STF TESLA-style 9cell cavity performance at KEK

SCRF Activities in China, Korea, India

Participation in STF at KEK

- Cryomodule and coupler design (IHEP)
- 9-cell cavity fabrication (PAL)
- LL single cell (IHEP)
- Cold BPM development (PNU)
- Cavity design/processing (PNU/KNU)
- Joining STF operation (RRCAT)
- China
 - Cavity fabrication test (Deep drawing, EBW, CBP, etc) (IHEP, Beijing U.)
 - Large grain cavity (Ningxia)
 - Works other than SCRF (DR design, etc)
- Korea
 - Works other than SCRF (RTML design, cavity BPM, DR)
- India
 - Nb material investigation
 - Cavity fabrication R&D in cooperation with FNAL
 - Cavity process R&D in cooperation with KEK

Further High Gradient R&D Plan

1: Research/find cause of low gradient

for quench: high resolution camera for field emission: confirm what are the residuals on the surface (SEM, XPS) for Q-disease: confirm what is diffused into the surface (XPS)

2: develop countermeasure

for quench: (**remove beads & pits**, material impurities & defect scan, ...) for field emission: (ethanol **rinse**, degreaser rinse, sponge wipe, Ultra-sonic, HPR,...) for Q-disease: (baking, Argon baking, ...)

3: verify countermeasure

exchange problem/information of cavities and apply the countermeasure

4: Integrate statics for the countermeasure

install the countermeasure world-wide, get statistics

A Technology Developed at Kyoto/KEK collaboration Visual Cavity Surface Inspection

Development of High Resolution Camera and Observations in TESLA Cavities

Y. Iwashita, Y. Tajima and H. Hayano

AES001 #3 cell 169° Edge of heat-affected zone

Blue Electro-Luminescence (EL) sheet mirror: ~40dec

Very consistent with Thermal Measurement

Guideline: Standard Procedure and Feedback Loop

	Standard Fabrication/Process	(Optional action)	Acceptance Test/Inspection
Fabrication	Nb-sheet purchasing		Chemical component analysis
	Component (Shape) Fabrication		Optical inspect., Eddy current
	Cavity assembly with EBW		Optical inspection
		(Tumbling)	(Optical Inspection)
Process	EP-1 (Bulk: ~150um)		
	Ultrasonic degreasing (detergent) or ethanol rinse		
	High-pressure pure-water rinsing		w/o optical inspection
	Hydrogen degassing at 600 C (?)	750 C	
	Field flatness tuning		
	EP-2 (~20um)		
	Ultrasonic degreasing or ethanol	(Flash/Fresh EP) (~5um))	
	High-pressure pure-water rinsing		
	General assembly		
	Baking at 120 C		
Cold Test (vertical test)	Performance Test with temperature and mode measurement	Temp. mapping	If cavity not meet specification

Guideline: Standard Procedure and Feedback Loop

	Standard Fabrication/Process	(Optional action)	Acceptance Test/Inspection
Fabrication	Nb-sheet purchasing		Chemical component analysis
	Component (Shape) Fabrication		Optical inspect., Eddy current
	cavity assembly with EBW		Optical inspection
		(Tumbling)	(Optical Inspection)
Process	EP-1 (Bulk: ~150um)		
	Ultrasonic degreasing (detergent) or ethanol rinse		w/ optical inspect.
	ligh-pressure pure-water rinsing		Optical inspection
	Hydrogen degassing at 600 C (?)	750 C	
	Field flatness tuning		
	EP-2 (~20um)		
	Ultrasonic degreasing or ethanol	(Flash/Fresh EP) (~5um))	Improve vield
	High-pressure pure-water rinsing		mprove yield.
	General assembly		
	Baking at 120 C		
Cold Test (vertical test)	Performance Test with temperature and mode measurement	Temp. mapping	If cavity not meet specification Optical inspection

Progress in Cavity & Cryomdule Integration and Engineering (2007-2008)

Europe (EU)

Input-coupler industrial assessment (for XFEL, LAL-Orsay)

Americas (Ams)

- Cryomodule engineering design (FNAL)
- Cryogenics engineering (FNAL in cooperation with CERN)
- SCRF Test Facility (New Meson Lab: NML) (FNAL)

Asia (AS)

- Cryomodule engineering design (KEK/IHEP)
- Superconducting test facility (STF) (KEK)

■ A global effort (plan agreed)

- Plug-compatible integration and test in cryomodule:
- Contribution : 2 cavities from EU (DESY), 2 from Ams (FNAL), 4 from AS AS (KEK), and with cryomodule cooperation (KEK, INFN)

Why Plug compatible Integration and Engineering ?

Plug-compatible design

- To allow variety of component design with features, constraints in each each region/institution
- To encourage continuous R&D effort specially to improve the field gradient and the yield
 - Cavity Type: Tesla, Low-loss (Ichiro), Re-entrant
 - Fine-grain or large grain
 - Fixed or tunable coupler,

The concept to be examined,

• Cavity-Integration and test in **one Cryomodule with** global cooperation cooperation to reach 31.5 MV/m in the middle of TD phase (2010)

Cavity Design

Plug-compatibly of Cavities Important for Global Cooperation

Input Coupler R&D at LAL-Orsay

1. Industrialization studies

- Optimize design for functionality
- Decrease number of parts and junctions
- Define precisely manufacturing processes
- Cost reduction

2- Define interfaces for plug-compatibility

TW 60

3- Develop new couplers:

Study of the cryomodule cross-section

Two shields model based on TTF-III One shield model

Cryomodule Assembly Facility at FNAL

Goal: Assemble R&D Cryomodules

- Where:
 - MP9: 2500 ft² clean room, Class 10/100
 - Cavity dressing and string assembly
 - **ICB**: final cryomodule assembly
- Infrastructure:
 - Clean Rooms, Assembly Fixtures
 - Clean Vacuum, gas, water & Leak Check
- DESY Cryomodule "kit" assembled

ICB clean: Final Assembly fixtures installed

ILC SCRF R&D Major Test Facilities

Facility	Host Lab	Operation start
TTF FLASH	DESY	1997
STF	KEK	2007~2008
ILCTA-ML	FNAL	2008~2009

New Vertical Test @ FNAL

Recently commissioned (IB1)

- Existing 125W@ 1.8 K Cryogenic plant
- RF system in collaboration with Jlab
- Capable of testing ~50 Cavities/yr
- Evolutionary upgrades:
 - Thermometry for 9-cells, 2 cavities at a time, 2 top plates, Cryo upgrades
 - Plan for two additional VTS cryostats
- Ultimate capacity ~ 264 cavity tests/yr

VTS Cryostat:IB1

New RF & Control Room

Plan for 2 more VTS pits

ML basic building block

ILC RF Unit: 3 CM, klystron, modulator, LLRF

Baseline design now has 2 CM with 9 cavities, 1 CM with 8 cavities + quad

KEK: SCRF Test Facility (STF)

Cavity and Cryomodule Performance Test to demonstrate <31.5 MV> with Global Effort

String Test with:2 cavities: DESY2 cavities: Fermilab4 cavities: KEK

Plug compatible integrattion to be demonstrated

Cryoomodule cooperation between KEK and INFN

STF-2: Beam Acceleration with One RF unit (3 cryomodule)

High Level RF and MLI R&D at SLAC

RF Power System
 be cost-effective

 Advanced Klystron,
 Marx Generators,
 Distribution system
 be efficient, tunable

Integration

- Beam handling
- alignment
 - Control level < 100 nm

Important: Cooperation with XFEL

- SRF design gradient : 25 MV/m
- ~ 100 SCRF cryomodule, based on the experience at TTF, DESY,
- Leading SCRF industrialization (scale: 1/20 of ILC, in coming 5 years)
- Very important to keep close cooperation with XFEL, on-going project.

ILC-GDE Project Management in TDP

EDR Management: 42

How We Work Together?

- Project Managers responsible for:
 - Facilitating the world-wide technical development effort, effort,
 - Setting technical direction and executing the project for for realization of the ILC.
- Regional Directors and Inst. Leaders responsible responsible for:
 - Promoting, funding and authorizing the cooperation program.

Global Plan for SCRF R&D

Calender Year	2007	2008	2009	2010	2011	2012
Technical Design Phase	TDP-1			TDP-2		
Cavity Gradient R&D to reach 35 MV/m		Surfac	e Proce	ss Yield > 50%	Producti	on Yield >90%
Cavity Integration: with 1 cryomodule			Global e	effort /IV/m>		
System Test with beam 1 RF-unit (3-modulce)	em Test with beam F-unit (3-modulce)		FLASH (DESY)		STF2 (KEK) NML (FNAL)	

R&D and technical design phased extended for two years, and to be completed in 2012.

Summary

■ ILC Technical Design Phase is starting with the goals of:

- Phase-1: for SCRF technical feasibility to be verified,
 - 35 MV/m with yield 50 % for 9-cell cavity gradient and
 - < 31.5 MV/m> with the cavity-string in a cryomodule
 - Plug-compatible cavity/crymodule to be examined with global effort
- Phase-2: for the technical reality to be demonstrated
 - **35 MV/m** with the yield **90 % for** 9-cell cavity field gradient of
 - To be ready for industrialization with cost-effective fabrication
 - System engineering including beam acceleration with one RF unit and 3 and 3 cryomodules with the field gradient <31.5> MV/m.

 We aim at the best effective global cooperation with plugplug-compatible approach in technical design and R&D
 in close cooperation with XFEL and other SCRF projects

ILC S0 Feedback Loop

The Diffusion-Limited Access of F⁻ To the Salt Film Produces Best Polishing

A New High Resolution, Optical Inspection System in TDP

tilted sheet illumination

Camera system (7µm/pix) in 50mm diameter pipe.

sliding mechanism of camera

For visual inspection of cavity inner surface.

camera & lens

~600µm beads on Nb cavity

perpendicular illumination by LED & half mirror

EL by Electro-Luminescence