

11th European Particle Accelerator Conference Magazzini del cotone, Genoa, Italy / June 23-27, 2008

UPGRADE ISSUES FOR THE CERN CELERATOR COMPLEX

OUTLINE

- Introduction
- · LHC
- Injector complex
- Conclusion

R. Garoby

Credits

×

Many contributors outside and inside CERN in multiple working groups:

- On LHC itself: F. Ruggiero et al. mostly in the context of CARE HHH network (with support of the EU-FP6) with contribution from US-LARP (with support of DOE).
- ★ On the future of proton accelerators at CERN: POFPA and PAF
- ★ On the injectors: design teams on Linac4, SPL, PS2, SPS improvements...

and invaluable help by numerous enlightening discussions during workshops & conferences...

INTRODUCTION

Objectives

• TOPIC:

×

Upgrades of proton (heavy ion) accelerators at CERN

LHC status

Lopton Hadron collider ("I Hol an ("CI

QUESTIONS:

- Why upgrade?
- When?
- Which upgrades?

June 23-27, 2008

R.G.

Why upgrade the LHC ?

June 23-27, 2008

Why upgrade the injectors ?

Need for reliability:

- Accelerators are old [Linac2: 1978, PSB: 1975, PS: 1959, SPS: 1976]
- They operate far from their design parameters and close to hardware limits
- The infrastructure has suffered from the concentration of resources on LHC during the past 10 years
- Need for better beam characteristics

When ?

Start of SLHC: ~2017

 \Rightarrow start of construction (New IR hardware and new injectors): ~2012

 $\Rightarrow Detailed project proposal (TDR + cost estimates): mid-2011$

 \Rightarrow R & D for new IR hardware and new injectors: 2008-2011

LHC Interaction Regions

×

proton-proton collider

c.m. energy 14 TeV (7x Tevatron)

Design luminosity 10³⁴ cm⁻²s⁻¹ (~100x Tevatron)

Start of beam commissioning in 2008

LHC baseline luminosity was pushed in competition with SSC $_{\alpha}$

Collimation phase 1:

Limit at ~40% of nominal intensity

- Initial IR triplets:
 - gradient :

205 T/m

- aperture:
 - Coil **70 mm**

• Beam screen 60 mm \Rightarrow minimum $\beta^* = 0.55$ m

maximum $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Power in triplet ~ 200 W at 1.9 K

Preliminary improvements

Enabled by additional resources for "New Initiatives" + Support of EU-FP7 & US-LARP

Collimation phase 2

Goal: 10 × better in cleaning efficiency / impedance / set-up time (accuracy?), much more robust against radiation and better for radiation handling.

Means:

×

- Cleaning efficiency: add. metallic collim. + cryogenics collim. inside sc dispersion suppressor + # material for primary collim.
- Impedance: investigate new ideas (!) + beam feedback + use less collimators + increased triplet aperture (IR upgrade phase 1)
- Set-up time (accuracy ?): BPM inside collimator jaws
- Planning:
 - Conceptual design review by end 2008
 - Hardware test with & without beam in 2009/2010
 - Operational in 2011/2012

June 23-27, 2008

Preliminary improvements

Enabled by additional resources for "New Initiatives" + Support of EC-FP7 & US-LARP

IR upgrade phase 1

- Goal: Enable focusing of the beams to β*=0.25 m in IP1 and IP5, and reliable operation of the LHC at 2 × 10³⁴ cm⁻²s⁻¹.
- **Scope:**

×

- Upgrade of ATLAS and CMS IRs.
- Replace present triplets with wide aperture quadrupoles based on LHC dipole cables (Nb-Ti) cooled at 1.9 K.
- Upgrade D1 separation dipole, TAS and other beam-line equipment so as to be compatible with the inner triplet aperture.
- Modify matching sections (D2-Q4, Q5, Q6) to improve optics flexibility. Introduction of other equipment to the extent of available resources.
- Planning: operational for physics in 2013

June 23-27, 2008

Instantaneous luminosity

For operation at the beam-beam limit with alternating planes of crossing <u>at two IPs:</u>

$$L = \frac{f_{rev}\gamma}{2r_p} n_b \frac{1}{\beta^*} N_b (\Delta Q_{bb}) F_{profile} F_{hg}$$

where (ΔQ_{bb}) = total beam-beam tune shift

$$\Delta Q_{bb} \cong -\frac{N_b}{\varepsilon_N} \frac{r_p}{2\pi\sqrt{1+\phi^2}}$$

with ϕ = Piwinski angle $\phi = \theta \sigma_Z / (2\sigma^*)$

effective beam size $\sigma \rightarrow \sigma \sqrt{1 + \phi^2}$

June 23-27, 2008

"Early Separation" scheme

Factor wrt

Main ingredients:

×

- **Ultimate beam**
- D0 dipole close to IP \Rightarrow bunches quasi-aligned at collision ($\phi \sim 0$) \Rightarrow larger ΔQ_{bb}
- Very small β *(8 cm)
- Hour-glass effect

```
0.86
Total
        6.7
```

6

- ultimate beam (1.7x10¹¹ protons/bunch, 25 spacing), β* ~10 cm
- early-separation dipoles in side detectors, crab cavities
 - \rightarrow hardware inside ATLAS & CMS detectors,

first hadron crab cavities; off- $\delta \beta$

"Full Crab Crossing" scheme

Main ingredients:

×

- **Ultimate beam**
- Crab cavities \Rightarrow bunches quasi-aligned at collision ($\phi \sim 0$) \Rightarrow larger ΔQ_{bb}
- Very small β *(8 cm)
- Hour-glass effect

0.86 **6.7** Total

6

Factor wrt L. Evans, ultimate W. Scandale, F. Zimmermann Stronger triplet magnets Beam 1 Crab cavities Beam 2 I.P. ultimate LHC beam (1.7x10¹¹ protons/bunch,

- 25 spacing)
- β* ~10 cm
- crab cavities with 60% higher voltage
 - \rightarrow first hadron crab cavities, off- δ β -beat

"Large Piwinski angle" scheme

Factor wrt

ultimate

Main ingredients:

×

- Larger beam current
- Large Piwinski angle and 3× intensity per bunch($\phi \sim 2$) ⇒ larger ΔQ_{bb}
- Reduced $\beta^*(25 \text{ cm})$
- Longit. profile

F. Ruggiero, W. Scandale. F. Zimmermann

- 50 ns spacing, longer & more intense bunches (5x10¹¹ protons/bunch)
- β*~25 cm, no elements inside detectors
- long-range beam-beam wire compensation
 - \rightarrow novel operating regime for hadron colliders

Schemes comparison © F. Zimmermann

Parameter	Symbol	Nominal	Ultimate	EA	FCC	LPA
transverse emittance	ε [μm]	3.75	3.75	3.75	3.75	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25	25	25	
beam current	I [A]	0.58	0.86	0.86	0.86	1.22
longitudinal profile	Statistics in the	Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	7.55	7.55	11.8
beta* at IP1&5	β* [m]	0.55	0.5	0.08	0.08	0.25
full crossing angle	θ _c [μrad]	285	315	0	673	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	0	0	2.0
hourglass reduction		1	1	0,26	0,36	0.99
peak luminosity	$L [10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1	2.3	15.5	15.5	10.7
peak events per #ing	a ser a s	19	44	294	294	403
initial lumi lifetime	τ _L [h]	22	14	2.2	2.2	4.5
effective luminosity	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	2.4	2.4	2.5
(1 _{turnaround} =10 II)	T _{run,opt} [h]	21.2	17.0	6,5	6.6	\$\5
effective luminosity $(T - 5 h)$	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	3.6	3.6	3.5
$(1_{turnaround} = 5 \text{ h})$	T _{run,opt} [h]	15.0	12.0	4.6	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	1.04 (0.59)	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.25	0.25	0.36
image current heat	P _{IC} [W/m]	0.15	0.33	0.33	0.33	0.78

Luminosity lifetime

$$\tau = \frac{1}{2} \frac{N_b}{\dot{N}_b} = \frac{n_b N_b}{L\sigma}$$

Increased luminosity ⇒ **reduced life time**

• Compensation measures \Rightarrow increased total intensity:

- either more bunches $(n_b \uparrow)$: abandoned because of heat load to the beam screen and electron clouds effects
- or higher intensity per bunch (N_b [↑]): "soft" limit used in the LPA scheme
- Possible additional action: luminosity leveling

Luminosity evolution

Luminosity decays faster with ES/FCC schemes

> Initial peak luminosity may not be useful for physics

But LPA always gives more events per crossing...

June 23-27, 2008

Luminosity leveling

Experiments prefer more constant luminosity, with less pile up at the start of the run and higher luminosity at the end.

⇒ Interest for luminosity leveling

How?

×

ES/FCC schemes: variable β* and/or θ (either the effective crossing angle at the IP or the field in the crab cavities)

• LPA scheme: variable β^* and/or σ_Z

Upgrade procedure

Main performance limitation:

Incoherent space charge tune spreads ΔQ_{SC} at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the required beam brightness N/ε^* .

⇒ need to increase the injection energy in the synchrotrons

Increase injection energy in the PSB from 50 to 160 MeV kinetic
 Increase injection energy in the SPS from 25 to 50 GeV kinetic
 Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for SLHC: => injection energy of 4 GeV

Present and future injectors

June 23-27, 2008

×

R.G.

Layout of the new injectors

June 23-27, 2008

×

R.G.

CÉRN

Layout of the new injectors

June 23-27, 2008

Stage 1: Linac4

 3 MeV
 50 MeV
 102 MeV
 160 MeV

 H source
 RFQ
 chopper
 DTL
 CCDTL
 PIMS

352.2 MHz

Linac4 beam characteristics

And the second	
lon species	H ¹
Output kinetic energy	160 MeV
Bunch frequency	352.2 MHz
Max. repetition rate	1.1 (2) Hz
Beam pulse duration	0.4 (1.2) ms
Chopping factor (beam on)	62%
Source current	80 mA
RFQ output current	70 mA
Linac current	64 mA
Average current during beam pulse	40 mA
Beam power	5.1 kW
Particles / pulse	1.0 10 ¹⁴
Transverse emittance (source)	0.2 mm mrad
Transverse emittance (linac)	0.4 mm mrad

CERN

Stage 1: Planning

Stage 1: Benefits

Stop of Linac2:

×

- End of recurrent problems with Linac2 (vacuum leaks, etc.)
- End of use of obsolete RF triodes (hard to get + expensive)

Higher performance for the PSB:

Space charge decreased by a factor of 2 in the PSB

 \Rightarrow potential to double the beam brightness and fill the PS with the LHC beam in a single pulse: no more long flat bottom at PS injection + shorter flat bottom at SPS injection: easier/ more reliable operation / potential for ultimate beam from the PS

- \Rightarrow easier handling of high intensity.
- Low loss injection process (Charge exchange instead of betatron stacking)
- High flexibility for painting in the transverse and longitudinal planes (high speed chopper at 3 MeV in Linac4)
- More intensity per pulse available for PSB beam users (ISOLDE) up to 2×
- **•** More PSB cycles available for other uses than LHC

First step towards the SPL:

 Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics

Stage 2: LP-SPL

LP-SPL beam characteristics

	6
--	---

4
0.16
0.6
1.5
20
1.2

Stage 2: PS2

PS2 main characteristics compared to the present PS

	PS2	PS
Injection energy kinetic (GeV)	4.0	1.4
Extraction energy kinetic (GeV)	~ 50	13/25
Circumference (m)	1346	628
Maximum intensity LHC (25ns) (p/b)	4.0 x 10 ¹¹	~1.7 x 10 ¹¹
Maximum intensity for fixed target physics (p/p)	1.2 x 10 ¹⁴	3.3 x 10 ¹³
Maximum energy per beam pulse (kJ)	1000	70
Max ramp rate (T/s)	1.5	2.2
Cycle time at 50 GeV (s)	2.4	1.2/2.4
Max. effective beam power (kW)	400	60

Stage 2: Planning

Construction of LP-SPL and PS2 will not interfere with the regular operation of Linac4 + PSB for physics.

Similarly, beam commissioning of LP-SPL and PS2 will take place without interference with physics.

ID	Task Name	Start	Finish	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
1	SPL + PS2	Mon 1/7/08	Mon 7/3/17		?	1	1					1			
2	Design	Mon 1 <i>/</i> 7/08	Wed 6/1/11]				<u> </u>	1						
3	SPL Construction	Mon 1/2/12	Fri 1/1/16)		
4	SPL beam commissioning	Mon 6/1/15	Fri 12/2/16										:)	
5	PS2 construction	Mon 1/2/12	Fri 4/1/16							:	:	:	<u>ل</u>		
6	PS2 beam commissioning	Mon 4/4/16	Fri 12/2/16										1)	
7	SPS modification	Fri 11/4/16	Fri 5/5/17											Ò.	
8	SPS beam commissioning	Mon 5/8/17	Fri 6/30/17											ι ě.	
9	Start operation for physics	Mon 7/3/17	Mon 7/3/17											A 1	/3

Milestones

- > Project proposal: June 2011
- Project start: January 2012
- LP-SPL commissioning: mid-2015
- > PS2 commissioning: mid-2016
- > SPS commissioning: May 2017
- Beam for physics: July 2017

Stage 2: Benefits

Stop of PSB and PS:

×

- End of recurrent problems (damaged magnets in the PS, etc.)
- End of operation of old accelerators at their maximum capability
- Safer operation at higher proton flux (adequate shielding and collimation)

Higher performance:

- Capability to deliver 2.2× the ultimate beam for LHC to the SPS
 ⇒ potential to prepare the SPS for supplying the beam required for the SLHC,
- Higher injection energy in the SPS + higher intensity and brightness
 ⇒ easier handling of high intensity. Potential to increase the intensity per pulse.
- Benefits for users of the LPSPL and PS2
 - More than 50 % of the LPSPL pulses will be available (not needed by PS2)
 - ⇒ New nuclear physics experiments extension of ISOLDE (if no EURISOL)...
 - Upgraded characteristics of the PS2 beam wrt the PS (energy and flux)
 - Potential for a higher proton flux from the SPS

Stage 3: HP-SPL								
Linac4 (160 MeV) SC-linac (5 GeV)								
3 MeV 50 MeV 102 MeV 180 MeV 643 MeV 5 GeV H source - RFQ - chopper - DTL - CCDTL - PIMS $-\beta=0.65$ $\beta=1.0$ \rightarrow								
Length: 540 m	X X 352.2 MHz 704.4 MHz Length: 540 m X							
HP-SPL		Option 1	Option 2					
beam	Energy (GeV)	2.5 or 5	2.5 and 5					
characteristics	Beam power (MW)	3 MW (2.5 GeV)	4 MW (2.5 GeV)					
		<u>or</u> 6 MW (5 GeV)	<u>and</u> 4 MW (5 GeV)					
	Rep. frequency (Hz)	50	50					
	Protons/pulse (x 10 ¹⁴)	1.5	2 (2.5 GeV) + 1 (5 GeV)					
	Av. Pulse current	20	40					
	Pulse duration (ms)	1.2	0.8 (2.5 GeV) + 0.4 (5 GeV)					

Stage 3: Benefits

<u>Possibility of (a) new experimental facilities(y) using a very high</u> <u>beam power:</u>

×

 For neutrinos (e.g. Neutrino Factory), adding an accumulator and a compressor ring (300 circumference) + muon facility with storage ring(s) at 20-50 GeV

 For Radioactive Ion Beams (ISOL-like), adding beam switchyard with targets and experimental hall

SUMMARY

Roadmap for LHC

×

June 23-27, 2008

36

Potential for other users

THANK YOU FOR YOUR ATTENTION!

REFERENCES - Linac4-

Linac4 accelerating structures

Linac4 accelerates H- ions up to 160 MeV energy:

- □ in about 80 m length
- □ using 4 different accelerating structures, all at 352 MHz
- □ the Radio-Frequency power is produced by 19 klystrons

□ focusing of the beam is provided by 111 Permanent Magnet Quadrupoles and 33 Electromagnetic Quadrupoles

	RFQ	DIL	CCDIL	PINIS	
Output energy	3	50	102	160	MeV
Frequency	352	352	352	352	MHz
No. of resonators	1	3	7	12	
Gradient E ₀	-	3.2	2.8-3.9	4.0	MV/m
Max. field	1.95	1.6	1.7	1.8	Kilp.
RF power	0.5	4.7	6.4	11.9	MW
No. of klystrons	1	1+2	7	4+4	
Length	6	18.7	25.2	21.5	m

A 70 m long transfer line connects to the existing line Linac2 - PS Booster

June 23-27, 2008

Linac4 civil engineering

Equipment Hall (Bld. 400)

False floor 500mm (all along equipment hall)

June 23-27, 2008

Tunnel cross-section

June 23-27, 2008

CÉRN

REFERENCES - SPL -

SPL architecture

×

SPL type	nominal improved	option I	Ib
frequency [MHz]	704.4	408.8	352.2/1408.8
beta families	0.65/0.92	0.6/0.76/0.94	0.67/0.8/0.94
cells/cavity	5/5	7/9/9	4/5/9
trans. energies [MeV]	160/589	160/358/876	tbs
output energy [MeV]	5137	4992	tbs
gradients [MV/m]	19/25	19/20/28	tbs
cavities p. module	6/8	4/4/8	1/1/8
cavities p. period	3/8	2/4/8	tbs
cavities p. family	39/192	32/48/176	tbs
cavities in total	231	256	tbs
length [m]	425	466	tbs

June 23-27, 2008 "Potential SPL architectures", SPL review, 30 April 2008, F. Gerigk, M. Eshraqi

Cryomodules

high-beta section:

- 704.4 MHz, 25 MV/m,
- 668 5094 MeV,
- 25 periods, 200 cavities,
- 377 m

×

low-beta section:

- 704.4 MHz, 19 MV/m,
- 180 668 MeV,
- 14 periods, 42 cavities,
- 86 m

11.45 m

12.25 m

in total: 463 m, 242 cavities, 2 families, 704 MHz

June 23-27, 2008 "Potential SPL architectures", SPL review, 30 April 2008, F. Gerigk, M. Eshraqi

Beam envelopes (5 rms)

Û

June 23-27, 2008 "Potential SPL architectures", SPL review, 30 April 2008, F. Gerigk, M. Eshraqi

×

R.G.

REFERENCES - v Factory and RIB facility -

June 23-27, 2008