High Quality GeV Electron Beams from Laser-Plasma Accelerators

Wim Leemans

Lawrence Berkeley National Laboratory

EPAC 2008, Genoa, Italy June 23-27, 2008

NUM SUR 151 (S)

http://loasis.lbl.gov/ Office of Science

Accelerators: from handheld to size of a small country

1929

Size x 10⁵ Energy x 10⁹

- Collider size set by maximum particle energy and maximum achievable gradient: breakdown limitation
- Plasma accelerators 1000 x higher gradient
- Motivates R&D for ultra-high gradient technology

Linear laser/plasma wakefield accelerator

- 10's to 100's GV/m, scales as \sqrt{n}
- Accelerate e⁻ and e⁺
- Must provide laser guiding mechanism: no non-linear self-guiding
- Must provide injection mechanism: no self-trapping

T. Tajima and J.M. Dawson, PRL 1979

Non-linear laser/plasma wakefield accelerator

- Blow-out or bubble regime
 - Large gradients
 - Self-trapping
- Two major experimental results:
 - •GeV with few % $\Delta E/E$ in 3 cm using a laser (LBNL)
 - Up to 85 GeV electrons using a 42 GeV beam (SLAC)
- Insufficient control
- Ineffective for positrons: very small accelerating region

Mid 90's -2003: lasers generate electron beams with 100 % energy spread

Building a laser wakefield accelerator using conventional accelerator paradigm

Drive laser: Ti-sapphire (chirped amplification technology)

Structure: plasma fiber

 Injector: source of electrons/positrons commensurate with LWFA technology

W.P. Leemans et al., IEEE Trans. Plasma Science (1996); Phys. Plasmas (1998)

Limits on acceleration: $\Delta W = E_z \cdot L$ How to pick the accelerator length?

- 1. Diffraction: laser beam defocuses
 - Option 1: increase spot size so that diffraction distance = O(gas jet)
 - Option 2: make a waveguide

Esarey et al., IEEE 1996; Leemans et al., IEEE 1996

Wake Evolution and Dephasing Yield Low Energy Spread Beams in PIC Simulations

Low energy spread beams at 100 MeV using plasma channel guiding

86 MeV, 300 pC, 1-2 mrad divergence

C. G. R. Geddes, et al, Nature, 431, p538 (2004)

- Bunch duration: sub-50 fs measured using electro-optic technique
- Simulations indicate < 5 fs bunches

Alternative: bigger spot

RAL/IC+ (12.5 TW -> ~20 pC, 80 MeV)
Mangles et al., Nature 431, p535 (2004)
LOA[^] (33 TW -> ~500 pC, 170 MeV)

•Faure et al., Nature **431**, p541, 2004

12

- Higher power laser
- Lower density, longer plasma $\Delta W_{d}[GeV] \sim I[W/cm^{2}]/n_{p}[cm^{-3}]$

3 cm

Laser: 40-100 TW, 40 fs 10 Hz

Going to higher beam energy

D. J. Spence & S. M. Hooker Phys. Rev. E 63 (2001) 015401 R; A. Butler et al. Phys. Rev. Lett. 89 (2002) 185003.

Experimental Setup for GeV Accelerator

W.P. Leemans et al., Nature Physics2, 696 (2006); K. Nakamura et al., Physics of Plasmas,14 056708 (2007)

First GeV Electron Beam from LWFA

- Laser: a₀ ~ 1.46 (40 TW, 37 fs)
- Capillary: D = 312 μm; L = 33 mm

W.P. Leemans et. al, Nature Physics2(2006) 696; *Simulation using VORPAL

xford

hysics.

1 GeV beam

Electron beam properties can be tuned by scanning input parameters - e.g density

Low Plasma Density can produce narrow energy spread beams without "external" injection

- Density: 5x10¹⁸cm⁻³
- Laser intensity: a₀=1.2 to 1.3
- Laser Pulse Length 45fs

Is the beam quality sufficient for an FEL?

Energy spread Emittance Stability

Injection in blowout regime degrades emittance due to high transverse field

- Consistent with few mrad divergence in experiments
- Degrades emittance for high energy self-injected stages
- Use controlled trapping at low wake amplitude to reduce emittance

Building a laser wakefield accelerator using conventional accelerator paradigm

- Drive laser: Ti-sapphire (chirped amplification technology)
- Structure: plasma fiber

Injection: source of electrons, controlled

W.P. Leemans et al., IEEE Trans. Plasma Science (1996); Phys. Plasmas (1998)

Techniques for Controlled Injection

*Ting et al., *Phys. Plasmas*12, (2005); [†]Esarey et al., *PRL* 79, (1997); Faure et al., *Nature (2006),* [‡]Bulanov et al., *PRL* 78, (1997), Geddes et al., PRL (2008)

"Electrons" accelerating on a wave: controlled injection

- Goal: Reduce energy spread from ~2% to <0.25 %
- Approach:
 - Produce MeV beam with <20% \Delta E/E
 - Accelerate to GeV: ∆E/E<0.2%</p>

Sequential spectra *centroid, avg

Divergence (ea. image ±33mrad)

- MeV beam produced with
 - Low absolute energy spread (170keV)
 - Good stability
 - Central energy (760keV ± 20keV rms)
 - Energy spread (170 keV ± 20keV rms)
 - Beam pointing (1.5 mradrms)

Geddes et al., PRL2008

E-beam quality: energy spread – continued Staged injector and accelerator structure

- Gas jet Injector + capillary
- Reproducible electron beam (few nC charge) achieved with 40 TW-laser pulses and gas jet
- High laser beam transmission
- Simulations indicate ~ $O(0.2\%) \Delta E/E$

0

Electron Energy ~ MeV

Undulator based diagnostic is first step towards SASE-FEL at 30 nm

- Undulator from Boeing corp.
- Measure emittance and ∆E/E through undulator spectrum

North Wall

South Wall

ΤT

SASE-FEL

Cave-A

PPPP

Conceptual (strawman) collider lay-out

- Diagnostics -- control
- Positron and polarized electron sources compatible with laser accelerators
- Emittance and energy spread control (collisions in plasma)
- High average power, high peak power lasers

Grand technical challenges in next 10 years

Challenge 1

Staging of modules

One-to-one, 3-D modeling

Challenge 2

1-> 100 GeV, low energy spread beam, low emittance

Challenge 4

Lasers: high rep rate PW lasers

Limits on acceleration How to pick the accelerator length?

- Must figure out way to replenish > STAGING
 - What is optimum stage energy?

Critical Technology: High average power, high peak power lasers, high wall plug efficiency

Pumping: diodes

- Laser: amplifier material and pump source
- Amplifier material: Ceramics

Prospect for kJ, picosecond, multi-kHz systems at 30-50 % wallplug seems possible

Summary

- Laser-plasma based accelerator technology continues to show promise:
 - •GeVbeams (~% Δ E/E) demonstrated and 10 GeV is feasible with PW-class laser
 - Key technology: guiding structures and controlled injection via density downramp
- Demonstration experiments underway:
 - Energy spread and emittance reduction using controlled injection
 - Staging technology: how to chain modules together
 - Free electron laser at 30 nm
- Colliders:
 - Many issues remain
 - Key technologies systematically being addressed

People who say it cannot be done should not interrupt those who are doing it.

George Bernard Shaw

1929

LHC, 2008

Size x 10⁵ Energy x 10⁹

Acknowledgments

Students

- M. Bakeman
- S. Berujon
- G. Bouquot
- E. Evans
- C. Lin
- E. Monaghan
- G. Plateau
- A.Shu

- Postdocs/Staff
- A. Gonsalves
- N. Matlis
- E. Michel
- K. Nakamura (UNR)
- D. Panasenko
- E. Esarey
- C. Geddes
- C. Schroeder
- D. Syversrud
- C. Toth
- N. Ybarrolaza
- O. Wong
- M. Condon

Collaborators

- LBNL: W. Fawley, K. Robinson, N. Kelez, R. Duarte, M. Battaglia, A. Ratti, et al.
- •TechX-Corp: J. Cary, D. Bruhwiler, et al.
- SciDAC team
- Oxford Univ.: S. Hooker et al.
- MPQ: F. Krausz et al.
- LOA: O. Albert, F. Canova
- GSI: T. Stoehlker, S. Hess

