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Abstract 
The usage of Helmholtz coils for magnetic block 

characterization is a widespread technique since it is little 
sensitive to errors in the block positioning and has good 
level of precision. In this paper, some calculations 
concerned to the block positioning are done for the cases 
where the Helmholtz condition is not satisfied. Also, the 
comparison between a model based on point dipolar 
magnetic moment and magnetized blocks with real 
dimensions is analyzed, as well as the corrections 
associated to the effect of self-demagnetization of the 
blocks. 

INTRODUCTION 
The characterization system based on Helmholtz coils 

is a largely used technique to determine the magnetic 
moment of magnetized blocks [1-2]. However, 
considerations about the advantages of this coil 
configuration and the approach employed can not be 
found neither in a compact way nor in an easy search in 
the scientific literature. The main topics studied in this 
paper are the following: the approach of point dipole, its 
validity when compared to the real block, considering 
geometric dimensions and magnetic permeability, and the 
advantages of two parallel coils (not being necessary 
exactly the Helmholtz geometry).  

FLUX GENERATED BY A POINT DIPOLE 
Figure 1 shows the definitions used for the analysis of 

the problem. A point dipole with magnetic moment m 
rotates over the z axis, in the center of two parallel coils, 
placed at a distance rdc from them. The mean coil radius is 
rc.  Here, the Helmholtz condition,  2rdc=rc  ,  is not being 
applied yet. 

 

Figure 1: Definition of the reference system associated to 
two parallel coils. 

Equation (1) describes the magnetic field B generated 
by a point magnetic dipole [3]: 

 

         ⎥
⎦

⎤
⎢
⎣

⎡ +−=
53

0

r

 )3(

r
 

4
)(

rm.rm
rB

π
μ

                     (1) 

 
where m = mx i+my j+mz k e r = rx i+ry j+rz k. 
 

The interest is in the By magnetic component, since 
only it contributes to the magnetic flux through the coils   
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The integration over two coils with N turns each, for 

one point dipole located exactly on the origin of the 
reference system, conduces to the magnetic flux ΦT that 
can be expressed in terms of a geometric factor Fg: 
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In order to verify if this coil configuration is little 

sensitive to small errors in the dipole position, it is 
considered a magnetic dipole displaced from central 
position by the vector Δ  

                                       
z)  ry,  r x, (r 0z00x0 Δ−Δ−Δ−== yΔ-rr    (4) 

where r is the vector from the dipole to one point on the 
coil surface and r0 is the vector connecting the origin of 
the reference system to the same point on the coil surface.  

Despite of the dipole be free to Δy displacements, 
only the magnetization my gives a contribution for the 
total flux:  
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Being Δy small enough, Equation (5) can be expanded 

in Taylor series up to 2nd order: 
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Displacements Δx and Δz are symmetric with respect 

to the coils, and their influence on the magnetic flux ΦT is 
evaluated expanding Equation (3), with the correspondent 
transformation shown in equation (4), in a Taylor series 
for small Δx and Δz, before the integration on the coils 
surfaces.  
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On the plane xz (y=0), the contribution of mx
 and mz 

to ΦT is null due to symmetry reasons and, again, only  my
 

generates a net magnetic flux in the coils.  
Any displacement ΔR (ΔR2 = Δx2 + Δz2) on the plane 

xz (y=0), independently of the values of Δx and Δz, 
presents the same geometry relative to the coils.  

The integration of Equation (2), expanded up to 2nd 
order in ΔR gives 
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It is observed from equations (6) and (7) that the 

magnetic flux becomes independent of the position errors 
Δx, Δy and Δz when 2rdc=rc , which is the Helmholtz 
condition. However, looking at Figure 2, we can notice 
that such condition is not so rigid, obtaining even good 
results when 2rdc is a little different of rc . Such graphics 
show the ratio between the flux detected due to a 
magnetic dipole displaced the amount Δy or ΔR from the 
coils central point (origin of coordinate system - Figure 1) 
and the ideal flux produced by a dipole placed at origin 
(Equation (3)). The three dimensional graphics present 
such flux difference as a function of the ratio rdc/rc and the 
position error. Even when the displacement is as huge as 
0.1rc and rdc/rc is far from Helmholtz condition, the 
discrepancy between the fluxes is smaller than 1%. 

 

 
Figure 2: Relative difference between the magnetic flux 
generated  by a dipole displaced Δy or ΔR from the point 
centered between the two coils  and the flux produced 
with the dipole at this point. All geometric dimensions are 
given in terms of coil radius length rc . 

FINDING THE MAGNETIZATIONS 
This section explains how to determine the dipolar 

magnetic moment m from the induced voltage in the 
coils.  

When the magnetic moment is rotating in the middle 
of the two parallel coils, as shown in Figure 1, the 
Induction Faraday´s Law predicts the appearing of an 
electromotive force V, according to V = -dΦ/dt, which is 
the magnetic flux derivative with respect to the time.    

In our case, a digital integrator PDI5025 [4] is used  
to detect induced voltage. In this way, the sequence of 
integrator readings corresponds directly to the increment 
of magnetic flux dФ.  

Only the first harmonic (dipolar coefficient) is 
expected when a Fast Fourier Transformer (FFT) is 
applied on the signal produced by one point magnetic 
dipole. The proof of this statement is easily obtained by 
looking at equation (6). Just my contributes for the 
magnetic flux, and my changes in a sinusoidal way when 
the magnetic dipole is rotating over axis z.  For this 
reason, the magnetic flux increment can be written as 

 
           )d  sin(nB  )d cos(n A  )d (nd 11 θθθΦ +=        (8) 

 
where dθ is the increment in the angular position and n is 
integer corresponding to the encoder angular position.  

Equation (8) can be made a function of n.dθ, in the 
following way: 
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and, consequently, dФ is 
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Finally, from the equality between equations (8) and 

(10), the components mx and my of the magnetic moment 
are obtained: 
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The three components of the magnetization can be 

determined by changing the block orientation. 
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COMPARISON BETWEEN A POINT 
DIPOLAR MAGNETIC MOMENT AND A 

REAL MAGNETIZED BLOCK 
An important question is how good the point dipole 

approach is when the real dimensions and magnetic 
permeability of the block are taken into account. In order 
to answer this question, a block homogeneously 
magnetized with remanent field (Br) of 1.2 teslas and with 
relative permeabilities of 1.06 for easy direction and 1.17 
for hard direction is used for the analysis. The flux 
generated by the block is calculated using Radia [5] 
magnetic field simulator. The block rotates around z axis 
and the coils are always in Helmholtz configuration 
(Figure 1).  

Three configurations of blocks relative to the coils 
are considered: a perfect cube of sides {L,L,L} and two 
rectangular blocks of sides {L,L/4,L}  and {L,L,L/4}. 

The ratio between the magnetic flux amplitude of a 
point dipole and the flux of a block homogenously 
magnetized without permeability changes like an 
exponential profile. Depending on the block shape, this 
ratio can either increases or decreases. It begins in 1 for 
the three cases and reaches, the higher ratio of 0,996 
when L= 0.7rc, for the cubic geometry. To make this 
comparison, the dipole has its magnetic moment m equal 
to the product VM, where V is the block volume and M is 
its magnetization.  

Also when  the shape of the magnet is considered, the 
magnetic flux captured by the coils does not present a 
sinusoidal profile anymore. Thus, decomposing the flux 
in a Fourier series, other coefficients besides those related 
to dipolar terms, will be present (sextupoles, decapoles).  

Next graphs are showing the ratio between FFT 
dipolar coefficients for point model (Cd) and  for a real 
block (Cr). These curve profiles do not depend on the coil 
radius. 

In general, the way to input  the magnets in the 
simulating code to calculate the magnetic field of the 
insertion devices, for instance, is to place homogenously 
magnetized blocks with the magnetization vector 
calculated from measurements in which the block is 
treated as a point dipole. 

 Each graph in Figure 3 has two curves: one related 
to the total effect of both permeability and shape, got 
from the point dipole (Cd) and real block (Cr), and the 
other concerning only to permeability, which proceeds 
from  the comparison between the real block and the 
homogenously magnetized block without permeability 
(Cs). Looking at the graphs,  it can be concluded that for 
these proposed block geometries, the permeability effect 
is much more important than the shape influence, 
reaching some percents (~ 4% for L, L/4, L). For 
calculations with permeability, the blocks were 
segmented  in cells with  lengths of  L/16. 

In order to reconstitute the correct magnetization of 
the homogenously magnetized block, it is necessary to 
multiply the dipolar coefficient obtained for the real block 
(or measured block) by the correspondent  value of the 

shape/permeability curve. To do these corrections, the 
block geometry, with respect to the coils, must be 
observed.  

 

Figure 3: Graphs showing the ratio betwen  the dipolar 
coefficients (A1) obtained for a point dipole and for a real 
block.  The curves considering only the permeability 
effect are also shown. 

REFERENCES 
 [1] C.S. Hwang, Shuting Yeh, P.K. Teng and T.M. Uen, 

Rev. Sci. Instrum. 67 (5), pp 1741-1747, 1996. 
[2] D.W. Carnegie and J. Timpf, Nucl. Instr. and Meth. A 

319, pp 97-99, 1992. 
[3] Reitz J.R., Milford F. J. and Christy R.W., 

Fundamentos da Teoria Eletromagnética, Rio de 
Janeiro, Campus, 1988, pp 178. 

[4] PDI5025 high precision digital integrator’s manual, 
Metrolab. 

[5] O. Chubar, P. Elleaume, J. Chavanne, “A 3D 
Magnetostatics computer code for insertion devices”, 
J. Synchrotron Rad. vol. 5, pp. 481-484, 1998. The 
Radia code. [Online]. Available: 

 <http://www.esrf.fr/machine/support/ids/Public/Code
s/software.html>. 

WEPC161 Proceedings of EPAC08, Genoa, Italy

07 Accelerator Technology Main Systems

2388

T09 Room-Temperature Magnets


