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Abstract

Precise and fast 3D space charge calculations for high
brightness, low emittance electron beams are of growing
importance for the design of future accelerators and light
sources. In this paper we investigate the performance of
the 3D space charge models implemented in the tracking
code Astra. These are the FFT-Poisson solver with the inte-
grated Green’s function and iterative Poisson solvers from
the software package MOEVE. The numerical tests con-
sider the performance of the solvers for model bunches as
well as the performance within a typical simulation for the
XFEL.

INTRODUCTION

The design of future light sources and colliders re-
quires increasingly precise 3D beam dynamics simulations.
The program package Astra (A space charge tracking
algorithm) has been successfully used in the design of linac
and rf photoinjector systems [2]. The Astra suite originally
developed by K. Flottmann tracks macro particles through
user defined external fields including the space charge field
of the particle cloud. Since efficient space charge calcu-
lations gained in importance, the 3D algorithms in Astra
have been further developed. Actually, two different types
of Poisson solvers for 3D space charge calculations are im-
plemented. One Poisson solver is a new FFT method based
on the integrated Green’s function. This concept was pro-
posed in [8, 9] and has been only recently implemented
in Astra. Another set of solvers consists of several itera-
tive solvers among them the geometric multigrid technique.
These solvers have been developed by G. Pdplau for space
charge calculations and implemented in the software pack-
age MOEVE (Multigrid for non-equidistant grids to solve
Poisson’s equation) [5].

In this paper the performance of the MOEVE and the
FFT Poisson solvers is investigated, in particular, for large
numbers of mesh points. Furthermore the behavior of the
Poisson solvers within the particle tracking Astra is tested
with the simulation of the first 14.5 m of the XFEL. The
numerical investigations were performed with the typical
restrictions of the FFT method (e.g., equidistant mesh, rect-
angular box as computational domain). However, the appli-
cation of iterative solvers offer much more possibilities for
simulations which are considered elsewhere, e.g., in [6, 7].
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MODEL FOR 3D SPACE CHARGE
SIMULATIONS

All algorithms for space charge calculations described
here have been developed for the particle-mesh method [3].
It is assumed that the bunch is modelled by means of a dis-
tribution of macro particles. Generally, a rectangular box,
in the following denoted as €2, is constructed around the
bunch. Then, a Cartesian grid is defined inside the box and
the values of the space charge density o are assigned at the
grid points by a volume-weighted distribution of the charge
of the macro particles. Next, the potential ¢ is calculated
by means of Poisson’s equation given by

—Ap = e inQ C R3,
€0
¢ = 0 ondfy, (1)
1
8—<p+—<p = 0 0noQq,
on r

where o denotes the dielectric constant and r the distance
between the center of the bunch and the boundary. The
application of a Poisson solver provides the potential ¢ at
the mesh points. Usually, the domain €2 is a rectangular box
constructed around the bunch. On its surface 92 = 921 U
00y (091 N 0Qe = 0) perfectly conducting boundaries
(0€21) or open boundaries (9€2) can be applied. For space
charge calculations within a beam pipe the domain Q is
assumed to be a cylinder with elliptical cross section.

While the FFT approach solves the Poisson equation
with open boundary conditions directly, equation (1) is dis-
cretized by means of second order finite differences in or-
der to apply a MOEVE Poisson solver on the resulting sys-
tem of equations [7].

PERFORMANCE OF 3D POISSON
SOLVERS

In this section the performance of the 3D Poisson solvers
implemented in Astra is investigated. These are a selection
of the MOEVE Poisson solvers and the new FFT Poisson
solver with the integrated Green’s function.

Performance of MOEVE Poisson Solvers

In MOEVE, different iterative solvers are implemented:
multigrid (MG) and multigrid pre-conditioned conjugate
gradients (MG-PCG); a pre-conditioned conjugate gradi-
ent method (PCG) with Jacobi pre-conditioner; (mainly for
comparison reasons) the successive over relaxation (SOR);
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and (for the solution of Poisson’s equation within an ellip-
tical shaped beam pipe [4]) biconjugated gradients (BiCG)
and BiCGSTAB as a stabilized version of BiCG.

The implementation of the methods PCG, SOR, BiCG
and BiCGSTAB is simple but these algorithms suffer from
the drawback that the number of iterations grows with
O(N?). Here, N denotes the number of mesh lines in
each coordinate direction. The state-of-the-art is the ap-
plication of a multigrid method as Poisson solver. This
offers optimal performance, i.e. in general the number of
iteration steps to obtain a certain accuracy is independent
of N. Consequently, the numerical effort grows only lin-
early with the total number of mesh points. This is proven
for model problems, where N = 2%+ 1. The MG solvers of
MOEVE are constructed such that this optimal behavior is
also achieved if N # 2! +1 (see Figure 1). Details of these
algorithms can be found in [6, 7] and citations therein.

The objective of this subsection is to investigate the per-
formance of the MOEVE Poisson solvers MG, MG-PCG
and PCG for a large number of grid points up to more
than 3 millions. The parameters of the model bunch were
taken from the simulation of the XFEL (see next section):
0.07 m after the cathode the bunch has an extension of
oy = oy = 1.36 mm and o, = 1.7 mm at an energy
of 2.5 MeV. Thus, for the numerical tests, the bunch was
assumed as ellipsoid with the half axesa = b = 1.4 mm,
¢ = 8.5 mm in z-, y- and z-direction, respectively. Fur-
ther the ellipsoid had a uniformly distributed charge of
@ = —1nC, i.e. the influence of the macro particles were
neglected. The algorithms MG, MG-PCG and PCG were
applied with Dirichlet and open boundary conditions, re-
spectively. The discretization was chosen to be equidistant.
All algorithms were performed until the maximum norm of
the relative residual had reached a value of less than 10 2.
This accuracy value seems to be rather large, but further
iterations would not improve the numerical error, because
the source term o is discontinues in general.
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Figure 1: Performance of selected MOEVE Poisson solvers
for Dirichlet boundary conditions.

Figure 1 shows the performance of the solvers for the
Poisson equation (1) with Dirichlet boundary conditions:
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Figure 2: Performance of selected MOEVE Poisson solvers
for open boundary conditions.

the numerical effort grows linearly for the MG solvers and
quadratically for the PCG method with the number of un-
knowns. The results for open boundary conditions are pre-
sented in Figure 2. The performance of PCG grows again
quadratically with the number of unknowns. The behavior
of the MG solvers is linear in general but there are some
exceptions. The red markers indicate the runs, where the
maximum norm of the relative residual doesn’t achieve a
value of less than 10~2. The worst performance was ob-
served with 1,331 million grid points. Here, the maximum
norm of the relative residual achieved only a value of 0.136
for MG and 0.176 for MG-PCG, respectively. These prob-
lems with open boundaries occur because the matrix of
the linear system of equations becomes numerically singu-
lar with increasing number of mesh points (see [4] for the
structure of the matrix).

Performance of FFT and MOEVE Poisson
Solversin Astra

The FFT Poisson solver recently implemented in Astra is
based on the integrated Green’s function proposed in [8, 9].
It aims to overcome the problem which the simple Green’s
function has with the approximation of the field of short or
long bunches [6].

In this subsection, the performance of the FFT algo-
rithm and the MOEVE Poisson solvers is investigated in
the Astra environment. The routine fieldplot was used in
order to get the CPU-time of a single space charge calcu-
lation. Here, the particle distribution for the simulation in-
cludes 500,000 macro particles, otherwise it has the same
parameters as given in the previous subsection. Since the
FFT method is restricted to N = 2¢ + 1 we performed
the tests with the following total number of grid points
N, = N3: N, = 333 = 35,937, N, = 653 = 274,625
and N, = 129% = 2,146, 689.

Table 1 represents the CPU-times of a single space
charge calculation. In general the effort is comparable for
MG, MG-PCG and FFT. MG applied on Poisson’s equa-
tion with Dirichlet boundary conditions is a little bit faster
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Table 1: Performance in Astra: CPU-times of MOEVE
Poisson solvers and the FFT Poisson solver.

N, MG | MG-PCG | PCG FFT
Dirichlet boundary conditions
35,937 0.12s 0.15s 0.24s |0.12s
274,625 | 0.91s 1.30s 507s | 1.08s
2,146,689 | 8.26s 11.20s 74.60s | 9.11s
open boundary conditions

35,937 0.14s 0.15s 095s | 0.12s
274,625 | 1.46s 145s 1477s | 1.08s
2,146,689 | 11.46s | 16.62s | 244.00s | 9.11s

than FFT, while MG with open boundaries is slower than
FFT.

XFEL SIMULATION

In this section the performance of the Poisson solvers is
investigated within a tracking simulation with Astra. Our
test scenario includes the first 14.5 m of the XFEL [1].
Since the 3D space charge models do not yet take into ac-
count the cathode, the first 0.07 m were simulated with
with the 2D space charge model of Astra which assumes
a cylindrically symmetric bunch. Then, the particle distri-
bution at 0.07 m was taken as the initial distribution for the
further simulation with the 3D space charge algorithms. All
space charge calculations were performed on an equidistant
mesh with N,, = 65% = 274,625 grid points. The bunch
contains 500,000 macro particles.

Table 2: Performance time for the tracking procedure for
different Poisson solvers.

Poisson solver

FFT, integrated Green’s function
initial guess = 0

MG 5h 28 min 15.18 s
MG-PCG 5h 21 min21.34s
PCG 6h11min58.45s
initial guess = solution of previous time step

MG 5h32min55.45s
MG-PCG 5h 16 min 45.47 s
PCG 5h21 min 2.39s
other method

2D, cylindrical symmetric model

CPU-time
5h 25 min 6.36s

8h27min36.47 s

Table 2 represents the CPU-times of the tracking simula-
tion with the different Poisson solvers. It turns out that the
simulation with MG, MG-PCG and FFT takes nearly the
same CPU-time each. Since the MOEVE Poisson solvers
are iterative methods, the solution of the previous time step
of the time integration can be taken as initial guess for the
space charge calculation. As shown in the second part of
Table 2 especially the PCG algorithm profits from this ap-
proach. The reason is that in the present simulation MG
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and MG-PCG needed half of the iteration steps with the
initial guess from the previous time step (for instance 1 or
2 steps instead of 3 or 4 with initial guess=0) while PCG
could save up to 3/4 or more of the iteration steps.

The tracking simulation performed 9814-9816 time inte-
gration steps (4th order Runge-Kutta scheme) for the MO-
EVE Poisson solvers and 9835 time integration steps for
the FFT method, both with 524 space charge calculations.

CONCLUSIONS

In this paper the performance of the 3D space charge
routines — partly only recently — implemented in Astra was
tested. A model bunch was considered as well as a track-
ing scenario including the first 14.5 m of the XFEL. It
turned out that the multigrid solvers of MOEVE and the
FFT solver with the integrated Green’s function have com-
parable performance. Nevertheless the MOEVE Poisson
solvers permit a greater variety considering the choice of
boundary conditions and the number and distribution of
mesh points.
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