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Abstract

It is proposed to compute short range wakepotentials in
a moving frame. The frame shall move with velocity v =
βc in positive z-direction, following the exciting charge.
In that frame, the relativistic charge still moves with the
velocity of light, but its length is expanded by the γ- factor
of the moving frame. Because of the longer charge, one can
use a larger gridspacing. This allows a saving in CPU-time
by a factor of γ3.

In the moving frame, the device is shortened by a factor
of γ and it moves opposite to the exciting charge. The time
to traverse the structure therefore is decreased by a factor
of γ(1 + β).

The larger possible gridspacing together with the de-
crease in time to traverse the structure allows a saving in
computation time by a factor of γ 4(1 + β).

THE PROBLEM

Today the machine designers ask for wakepotentials of
bunches with length of less than σ = 1 mm in devices
which are longer than L=1 metre. They want to know
the wakepotentials in s-ranges up to s = 20σ. For com-
puting such wakepotentials, one needs a grid spacing h
which is much less than the bunchlength, eg. h = σ/10.
Even when computing with a moving mesh, the number
of needed gridcells is proportional to 1/h3, as the num-
ber of z-planes which need to be used in a moving mesh
is nz = s/h. Ncells ∝ 1/h3. Because the maximum sta-
ble timestep is proportional to h, the number of timesteps
needed is proportional to the length of the device divided
by the gridspacing, Ntime ∝ L/h. In total, the computa-
tional load scales as

NtimeNcells ∝ L

h

s

h3

∝ L

σ4

THE WAY OUT

Compute in a moving frame which travels with β < 1 in
the same direction as the exciting charge.

When one computes the wakefield in a frame which
moves in the same direction as the exciting charge, but with
a velocity less than c, the lengths are changed. The device
becomes shorter by a factor of γ. The exciting charge be-
comes longer by a factor of γ. Because of the length trans-
formation of σ, one may compute with a larger gridspacing,

now proportional to the transformed σ. Eg. h ′ = γσ/10.
Because the needed z-extension of the moving mesh also
grows by γ, the number of gridcells in a moving mesh com-
puting in a moving frame scales like Ncells ∝ γs/(γσ)3.

The larger gridspacing also allows a timestep.

Because of the length transformation of the device, the
needed simulation time is reduced by a factor of γ. To-
gether with the larger timestep, the number of timesteps
it takes to simulate a relativistic charge traveling over the
length of the device now is Ntime ∝ L/γ/h′ = L/γ/(hγ).

But the device is not at rest in the moving frame. It trav-
els with velocity βc in negative z-direction. Because the
end of the device moves toward the exciting charge, the
number of timesteps needed until the relativistic charge has
traveled from the beginning of the device to its end is:

Ntime =
1

1 + β

L/γ

γh
(1)

When computing in a moving frame, the computational
load scales like

NtimeNcells ∝ 1
1 + β

L/γ

γh

γs

(hγ)3

∝ 1
γ4(1 + β)

L

σ4

In order to have a substantial saving in computational load,
γ should be 2 or larger.

THERE IS NO FREE LUNCH?

The argument of the previous section why computing in
a moving frame is cheaper is that one may use a larger
gridspacing because of the longer wavelengths excited by
the longer charge. But that is not absolutely true. The
wakefields are the primary fields of the exciting charge
which are scattered by the device. When the device moves
in negative z-direction, the scattered fields traveling in pos-
itive direction have wavelengths which are expanded by
γ, but the scattered fields traveling in negative z-direction
will have wavelengths which are shortened by γ. When
one computes with a larger gridspacing, the waves trav-
eling in negative z-direction will suffer severe dispersion
errors. Fortunately, these waves do not contribute much
to the wakepotentials because the witness charges see fre-
quent sign changes of these fields.
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Figure 1: Primary field and scattered field when a beam
exits a cavity. This is computed with the standard frame, ie
the material boundaries are at rest, γ = 1.

Figure 2: This is computed in a moving frame. The ma-
terial boundaries move. The beam length is expanded by
γ = 2. The length of the cavity is shrunk by γ.

RELATIVISTIC BOUNDARY
CONDITIONS

The field computation within the volume does not
change. Only cells where material enters or exits need a
modification in their fields update procedure.

The boundary condition at perfect conducting planes
moving with �v: �n× �E = (�n · �v) �B.

The boundary condition at straight waveguide sections
where the plane normal is perpendicular to the velocity of
the device do not change. Tangential electric fields there
continue to be zero.

Finite Difference Implementation

As an example how the relativistic boundary condition
can be implemented in a FDTD-code, we show the equa-
tion for computing the next Hx component from the old
one and the surrounding E-components.

At metallic planes with plane normal in −z-direction,
the boundary condition for Ey is Ey = βcBx. In Finite
Difference terms where hx, hy, ux, uy are integrated mag-

Figure 3: The beam is well above the moving cavity.

netic and electric voltages between cellcenters and grid-
points, the update for hx reads

hn+1/2
x (i, j, k) = hn−1/2

x (i, j, k)
−Fx (un

z (i, j + 1, k)− un
z (i, j, k) (2)

−un
y (i, j, k + 1) + un

y (i, j, k)
)

where

Fx = Δt
Δx

μΔyΔz
(3)

Below a metallic plane, the uy-voltage above the gridcell
must be computed from the hx-voltage within the gridcell.
In a equally spaced grid, Δx = Δy = Δz, and also assum-
ing ε = μ = c = 1:

un
y (i, j, k + 1) =

β

2

(
hn−1/2

x (i, j, k) + hn+1/2
x (i, j, k)

)
(4)

This gives an update for hx:

hn+1/2
x (i, j, k) = hn−1/2

x (i, j, k)
1 + βFx

1− βFx

− Fx

1− βFx
(un

z (i, j + 1, k)− un
z (i, j, k) (5)

+un
y (i, j, k)

)

The factor Fx, which depends on Δz, must also be mod-
ified. Instead of using the normal grid-spacing, one must
use the z-length of that part of the gridcell which is not yet
overrun be the moving material boundary.

EXAMPLE

Figure 1 shows the known field pattern of a wakefield
computed without moving boundaries. Figures 2 and 3
show the aequivalent field of a 2 times longer beam in a
two times shorter geometry moving with β = 0.866 in -z-
direction.
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