
BEAM DYNAMICS USING GRAPHICAL PROCESSING UNITS∗

M.D. Salt† , R.B. Appleby, University of Manchester and the Cockcroft Institute, Manchester, UK
D.S. Bailey, University of Manchester, Manchester, UK

Abstract

Simulation of particle beam dynamics in accelerators
is computationally expensive, and requires ray-tracing of
high numbers of particles to ensure the accuracy of the re-
sult, to model collective effects and to reduce the statistical
error. Conventional beam tracking tools operate sequen-
tially on particle phase space to compute the trajectories of
particles through many turns around circular and along lin-
ear machines. Graphical Processing Units (GPUs) utilise
stream processing techniques to dramatically speed up par-
allel computational tasks, and offer considerable perfor-
mance benefits to particle beam dynamics processing. In
this paper, the application of stream processing to beam
dynamics is presented, along with the GPU-based beam
dynamics code GPMAD, which exploits the NVidia [1]
GPU processor and demonstrates the considerable perfor-
mance benefits to particle tracking calculations. The accu-
racy and speed of GPMAD is benchmarked using the DIA-
MOND [2] Light Source BTS lattice, and the ATF extrac-
tion line.

STREAM PROCESSING

Stream Processors

The application of stream processing to the parallel pro-
cessing of beam dynamics simulations was first pointed out
in [3], where the potential gain in processing power was
discussed. Conventional beam dynamics simulations are
carried out on Central Processing Units (CPUs), which are
multifunctional devices with a large proportion of the sili-
con die devoted to control and cache. Arithmetic floating-
point units (FPU) occupy only a small proportion of the
die, resulting in comparatively poor floating point perfor-
mance of the processor. However, stream processors offer
improved floating point performance due to a highly op-
timised single-instruction-multiple-data (SIMD) architec-
ture. Graphics Processing Units (GPU) are a type of stream
processor, whose development was driven by the need for
ultra-fast image rendering in the computer games industry.
Due to the demands of the gaming and image processing
industry, GPUs are very powerful: the peak Floating-Point
Operations per Second (FLOPS) of the latest GPU is 768
GFLOPS, compared with only 50 GFLOPS for a typical
dual-core CPU.

Parallel programming of a stream processor requires
a different approach to conventional programming tech-
niques. The subsection of the simulation (kernel function)

∗University of Manchester and Cockcroft Institute
† michael.salt@hep.manchester.ac.uk

targeted at the stream processor is written in a dedicated
stream processing language.

Early GPUs had closed architectures designed specif-
ically for rendering, but later architectures were opened
up, allowing exploitation for alternative purposes. General
Purpose computation using GPUs (GPGPU) developed,
leading to an array of programming languages. Examples
of GPU-based programming languages are Brook [4] and
CUDA [5].

Accelerator Physics and Stream Processing

The beam dynamics of the motion of particles through an
accelerator is well suited to stream processing techniques.
The motion is modelled by representing a particle as a point
in a 6-dimensioanl phase space, with positions (x,y,τ), as-
sociated canonical momenta (px,py ,pt) and phase space
vector,

X = (x, px, y, py, τ, pt)
T

. (1)

The evolution of the phase space point through a mag-
netic accelerator elements may be modelled using the sec-
ond order transport map [6],

Xfinal
j = �Xj +

6∑

k=1

RjkXk +
6∑

k=1

6∑

l=1

TjklXkXl. (2)

Therefore, the complete process of evolving a particle
through a single magnetic element requires many multiply-
reduce operations. The particles are assumed to be suf-
ficiently relativistic that inter-particle interactions may be
ignored, allowing the same operation to be applied to all
particles in parallel. With large particle numbers, this is a
highly SIMD operation, and thus well suited to the GPU
stream processor.

GPMAD - a Stream Processor based accelerator
code

GPMAD [7] is a stream processing beam dynamics
code, written in C/C++ with CUDA [5] extensions that in-
terface with the GPU hardware. The code is compliant with
the XSIF input format, based on the parser from the code
BDSIM [8].

GPMAD extracts information from the element list and
calculates the zeroth, first and second order transfer maps
required for computation in a C++ pre-processor. The
particle phase space data is gathered from a seperate file,
which GPMAD sends to the stream processing CUDA

Proceedings of EPAC08, Genoa, Italy TUPP085

05 Beam Dynamics and Electromagnetic Fields D05 Code Developments and Simulation Techniques

1727

thread 1

thread 2

thread 3

thread N

.....

Figure 1: Parallel execution of n threads through a first-
order drift matrix element. The operation of the transfer
map on n different particle threads occurs simultaneously.

components which perform the linear algebra of the trans-
fer maps. The CUDA implementation handles GPU mem-
ory allocation, GPU memory copying operations and the
execution of the kernel function. In terms of data struc-
tures, the operations on data stored in GPU memory are
called threads, which are grouped into blocks, and multi-
ple blocks may be grouped onto grids. GPMAD, as well as
performing evolution of particle phase space vectors (track-
ing), can compute the optical β-functions and perform par-
ticle loss calculations with a hard-edged collimation model.

STREAM PROCESSING CASE STUDIES

To verify the effectiveness of stream processors for beam
dynamics, the techniques and the GPMAD code described
in this paper have been applied to two examples cases - the
BTS transfer line in the DIAMOND light source, and the
ATF extraction line.

DIAMOND BTS

The 94 element, 68.04 m DIAMOND Booster-to-
Storage (BTS) lattice was used to verify precision and
performance compared to the code MAD [6].The trans-
fer line contains drifts, sector dipoles, quadrupoles, kickers
and collimators, and so is a good test of the linear optics
of GPMAD and the performance gains over CPU-based
codes. The optical functions computed with GPMAD are
presented in figure 2.

The BTS lattice is required to give a small emittance
for injection into the main storage ring, which is achieved
through collimation of the transverse phase space. GP-
MAD can perform highly parallel single particle tracking,
for computing particle losses and effects of halo phenom-
ena.

To verify the accuracy of GPMAD, the single particle
trajectories through the transfer line in both GPMAD and
MAD are computed are compared in figure 3. The figure
shows the particle trajectory is almost identical in both pro-
grams. This is of particular importance because current

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80

O
pt

ic
al

 F
un

ct
io

n
[m

]

Distance Along Beamline [m]

Beta(x) Beta(y)

Figure 2: The horizontal and vertical β-functions in the
DIAMOND BTS computed using GPMAD.

GPUs are only single-precision devices.

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0 10 20 30 40 50 60 70 80
x
 p

os
it

io
n

[m
]

Distance along Beamline [m]

MAD (Reference) Tracking GPMAD Tracking

Figure 3: Single particle Tracking in the horizontal phase
space co-ordinate x to verify the accuracy of GPMAD
against MAD.

Figure 4 demonstrates the deviations of GPMAD rela-
tive to a CPU-based version of MAD. The deviation does
not exceed 0.025 % at any point throughout the lattice. The
behaviour appears to be non-accumulative, which indicates
acceptable stability and accuracy for use with longer beam-
lines.

-2.00E-04

-1.50E-04

-1.00E-04

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0 10 20 30 40 50 60 70 80

D
ev

ia
ti

on

Distance along Beamline [m]

Figure 4: Deviation �py

py
relative to MAD to quantify the

accuracy of GPMAD.

Due to the parallel nature of GPMAD, the most benefit
is seen with high particle numbers and when performing
high statistical accuracy tracking. A bunch of gaussian-
distributed particles were evolved through the BTS lattice,
and figure 5 compares the distributions at the end of the lat-
tice. For high-statistics tracking, the results from the two
codes are identical: the calculated mean and standard de-
viation differ by less than 0.0001 %, between MAD and
GPMAD.

TUPP085 Proceedings of EPAC08, Genoa, Italy

05 Beam Dynamics and Electromagnetic Fields

1728

D05 Code Developments and Simulation Techniques

0

1000

2000

3000

4000

5000

6000

7000

8000

-0
.0

07
-0

.0
06

-0
.0

05
-0

.0
04

-0
.0

03
-0

.0
02

-0
.0

01 0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
01

0.
01

1
0.

01
2

0.
01

3
0.

01
4

0.
01

5
0.

01
6

0.
01

7
0.

01
8

0.
01

9
0.

02
0.

02
1

0.
02

2
0.

02
3

N
um

be
r

of
 P

ar
ti

cl
es

'x' Distribution

GPMAD MAD

Figure 5: Distribution of x at the exit of the DIAMOND
BTS Lattice, computed in both MAD and GPMAD.

The main attraction of GPMAD is the performance ben-
efit, and figure 6 shows a performance comparison of GP-
MAD running on an NVidia GeForce 8600m GT GPU,
with 512 MB of dedicated graphics memory, against MAD
running on a notebook computer with a 1.5 GHz Intel Core
Duo processor, 2 GB of main memory. The performance
benefits of stream processing over conventional CPU-based
codes are clear, particularly as the tracked particle number
increases. For example, when tracking 4,096,000 particles,
GPMAD completes the beam tracking in a quarter of the
time. This time saving may be used to further refine a sim-
ulation, or to increase the numbers of particles to give better
statistical precision.

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000 3500 4000 4500

W
al

l-
C

lo
ck

 T
im

e
 t

o
C

om
pl

et
e

[s
]

× 1000 Particles

GPMAD MAD

Figure 6: The performance comparison of GPMAD and
MAD, when tracking large distributions of particles.

The tracked particles may be collimated due to element
apertures, which can be studied with GPMAD using a hard-
edged collimation model. Figure 7 shows electron losses
generated by GPMAD on a small section of the BTS.

0
20000000
40000000
60000000
80000000
10000000
12000000
14000000
16000000
18000000
20000000

26
.6

 P
ST

R
A

IG
H

T
4B

26
.6

5

V

C
O

L
L

1

26
.6

5

B

T
SB

PM
3

26
.7

5

PS

T
R

A
IG

H
T

4C

27
.1

5

D

Q
U

D
3

27
.6

5

PS

T
R

A
IG

H
T

5

28
.0

5

FQ

U
D

3

28
.2

5

B

T
SC

4

33
.1

6

PS

T
R

A
IG

H
T

6A

33
.2

1

H

C
O

L
L

2

N
um

be
r

of
 P

ar
ti

cl
es

 L
os

t

Figure 7: Electron loss rates in the DIAMOND BTS line,
as computed using GPMAD.

ATF Extraction Line

To further test the stream processing, GPMAD was used
to study beam transport in the ATF extraction line at KEK.
This line extracted from the damping ring and provides a
series of emittance measurement diagnostics. The beam
distribution in the horizontal co-ordinate x plotted at the
end of the extraction line in figure 8. The agreement with
MAD is excellent.

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r

of
 P

ar
ti

cl
es

'x' Distribution

MAD GPMAD

Figure 8: The horizontal beam in x at the end of the ATF
extraction line, computed with GPMAD.

CONCLUSIONS

Stream Processing has demonstrated considerable poten-
tial to give performance benefits to the study of beam dy-
namics in particle accelerator. The code GPMAD exploits
stream processing to provide accurate particle tracking,
with a large performance benefit over CPU-based codes.
The greatest performance gains are realised where the num-
ber of particles to be tracked is high, and will be of benefit
when studying problems in beam dynamics requiring high
statistical accuracy or many turns of a circular machine.
Stream Processing is an exciting and rapidly developing
field, and in accelerator physics there are many problems
that may benefit from this parallel method of computation.

REFERENCES

[1] Nvidia R© Corporation www.nvidia.com.

[2] Diamond Light Source, Oxfordshire www.diamond.ac.uk

[3] R. B. Appleby et al., ”High-Performance Stream Computing
for Particle Beam Transport Systems”, Computing for High
Energy Physics Conference 2007 - 66

[4] BrookGPU graphics.stanford.edu/projects/brookgpu

[5] NVidia R© ”The CUDA Toolkit and NVCC compiler”
www.nvidia.com/object/cuda home.html.

[6] F.Christoph Iselin, ”The MAD Program, Physical Methods
Manual”, CERN 1994.

[7] R.B. Appleby, D.S. Bailey, M.D. Salt, ”Beam Dynamics
using the Stream Processing Code GPMAD”, EUROTeV-
Report-2008-022.

[8] I. Agapov et al. ”The BDSIM Toolkit”, EUROTeV-Report-
2006-014-1.

Proceedings of EPAC08, Genoa, Italy TUPP085

05 Beam Dynamics and Electromagnetic Fields D05 Code Developments and Simulation Techniques

1729

