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Abstract 
In this paper we describe a new numerical code to 

calculate wake fields of resistive wall geometries. Our 
code is based on conformal implicit scheme. It allows to 
estimate wake fields of very short bunches taking into 
account transient resistive effects neglected in the 
European XFEL impedance budget so far. 

INTRODUCTION 
The achievement and preservation of the very small 

electron beam emittance with high peak current is one of 
the most actual challenges in modern accelerator for 
fundamental and applied sciences to reach the design 
goals of the projected facilities [1,2]. The physics of high 
energy small emittance electron beams is basically 
dominated by the interaction of the beam with 
surrounding structure through the excited electromagnetic 
fields [3].  These fields, known as the wake fields, have in 
general the transverse and longitudinal components which 
produce the transverse kick and extra voltage for the 
trailing charges in the beam. The analytical solutions for 
the wake fields are available for the structure with 
relatively simple geometry [4,5]. 

The real structure, that can include cavities, transitions, 
collimators, bellow etc, in general has a complicated 
geometry and composed of resistive material.  Various 
Maxwell grid equation (MGE) based numerical codes 
have been developed to solve the 2D and 3D wake field 
problems in frequency and time domains [6-7] but usually 
without resistive wall losses. From existing numerical 
codes only CST Microwave Studio [8] can model 
structures with finite resistivity but the algorithm suffers 
from the numerical dispersion. To prevent the numerical 
dispersion in longitudinal direction, the dispersion-free 
numerical scheme is proposed, for example, in [9].  

Based on it a new (longitudinally) dispersion-free 
algorithm is developed to evaluate the wake fields in 
structures with finite wall conductivity. The impedance 
boundary condition in this scheme is modelled by the one 
dimensional wire connected to boundary cells. A good 
agreement of the numerical simulations with the 
analytical results is obtained. The developed code allows 
to calculate wake fields of arbitrary shaped geometries 
with walls of finite high conductivity.  

FORMULATION OF THE PROBLEM 
Consider the ultrarelativestic charged particle bunch 

with longitudinal distribution ρ , moving along the 
azimuthally symmetric structure with the speed of the 
light c  (Fig.1). The internal region of the structure Ω  is 
bounded by the resistive infinite wall with conductivityκ . 

The problem is to calculate the electromagnetic fields 
,E H
r r

 induced by the bunch. It reads 

 

Figure 1: Charged particle moving through an 
accelerating structure supplied with infinite pipes. 
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The current density is b cj j j= +
r r r

, where bj cρ=
r r is the 

charge current and  cj Eκ=
rr

 the current induced in the 
wall. The boundary conditions for electromagnetic fields 
are given by the continuity of tangential components of 
electric and magnetic fields on the boundary between the 
vacuum and the wall.  

In accelerator applications, the studied structure is 
usually supplied by ingoing pipe and the well known 
analytical solution for ultra-relativistic beam in a perfectly 
conducting cylindrical pipe [4] can be used as initial field. 

Let us consider an incident plane EM wave from 
vacuum on the conductor surface (fig. 2). For conducting 
media the relation between the incident angle and the 
transmitted one can be written in the form of Snell’s law 

0
0

1
sin sin

( , , )t n
φ φ

φ ω κ
=                                 (2) 

where 0φ  and tφ are the incident and transmitted angles, 
correspondingly,  ω  is the frequency of incident wave, n  
is a function of conductivity κ , angle 0φ  and 
frequencyω . The exact form of function ),,( 0 κωφn can 
be found in [10]. For ωεκ 0>>  the incident waves 
propagating not parallel to the boundary surface are 
transmitted perpendicular to the boundary surface 
( ~ 0tφ ), i.e. only tangential components of electric and 
magnetic fields survive in the conducting media.  

In accelerators the spectrum of EM fields excited by 
the bunch interaction with surrounding structure extends 
to the frequencies ~ /b cω σ , where σ  is the rms bunch 
length. The vacuum chambers usually are made from 
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materials with high conductivity and the condition 
0κ ε ω>>  is satisfied. As an example, for stainless steel 

( 6 1 11.4 10 mκ − −= ⋅ Ω ) and for a bunch with rms length of     

25 μm, 4
0/ ~ 10κ ε ω . 

 

Figure 2: Transmission and reflection of EM wave on 
vacuum-conductor boundary surface. 

Hence, in media with high conductivity only tangential 
components of the fields should be taken into account and 
they has to be coupled to the full three dimensional field 
in the vacuum.  

In vacuum the full three dimensional grid space is used. 
Propagation of the tangential components of each 
boundary cell in the conducting media is described by one 
dimensional (1D) set of Maxwell’s equations. The 
numerical algorithm based on this model is given in the 
next section. 

A SCHEME WITH CONDUCTIVITY 
In this section we describe an implicit algorithm for 

electromagnetic fields computation that includes the 
boundaries with finite conductivity. The propagation of 
the tangential field in the conductor is described by 1D 
electromagnetic problem discretized as shown in Fig.3.   

The excitation source of EM field in conducting media 
is the tangential field in boundary cell.  Following the 
matrix notation of the finite integration technique (FIT) 
[11] the implicit 1D scheme reads 
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The two-banded matrix sP  plays the role of discrete 
differential operator. The matrices A  and B  are diagonal 
with entries 

0ii
Za e κ τ− Δ= , 000

0.5e Za κ τ− Δ= ,
0

(1 )
ii

iia
b

Zκ
=

−
.     (4) 

The boundary conditions at the interface read 

0n
sNe =) , 1 0.5

0 0
n n n
s sh h hϕ

+ += =
) ) )

,                                     (5) 

where  1/ 2nhϕ
+)

 is magnetic field in the vacuum cell to 
which belong the wire. 
 

 

Figure 3: Vacuum grid with 1D conducting lines at the 
boundary. 

The implicit scheme in vacuum region reads 
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c
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voltages at the conductive boundary. 
The stability condition of the above introduced scheme 

is zτΔ ≤ Δ . With the time step τΔ  equal to longitudinal 
mesh step zΔ , the scheme does not have dispersion in 
longitudinal direction. The transverse mesh and mesh step 
in conductor can be chosen independently from stability 
considerations. 

The above scheme can be easily generalized for higher 
order azimuthal harmonics and 3D case. Such 
generalization and an explicit variant of TE/TM scheme 
will be published in [12,13]. 

NUMERICAL EXAMPLES 
As the first test we calculate the steady state wake of 

the Gaussian bunch with rms length σ=1mm in round 
pipe of radius a=1 cm and of conductivity κ=1e5 S/m. To 
obtain the steady state solution we have calculated 2m of 
the pipe and subtracted the wake of the first meter. Fig. 4 
shows convergence of the loss factor to the analytical 
value 1.31 V/pC.  Fig. 5 compares the analytical and the 
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numerical wakes for mesh resolution of 10 points on σ. In 
this case the error in loss factor is about 3%. 
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Figure 4: Convergence of the loss factor. 
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Figure 5: Comparison of numerical and analytical wakes. 

As the second test we calculate a wake of finite length 
resistive cylinder.  It has radius a=1cm, length b=10cm 
and conductivity κ=1e4 S/m. For the Gaussian bunch with 
σ=0.025 mm the analytical results of the paper [14] could 
be used. The loss factor reads  
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where function lK  is given by Eq. (5.3) from [14]. 
Fig. 6 shows the numerically obtained wake (black 

dashed line) and the analytical steady state wake [3, 4, 15] 
(solid gray line). The numerically obtained loss factor is 
equal to 58 V/pC and coinsides with that given by Eq.(7) 
(57 V/pC). The steady state loss factor is equal to 16 
V/pC and underestimates the energy loss.  

Third test is wake potential calculation of tapered 
collimator (Fig.7) with parameters a1=17mm, L1=200 
mm, a2=10mm, L2 =100mm, a3=6mm and conductivity 
κ=1e4 S/m. For a Gaussian bunch σ=50 μm numerically 
obtained loss factor for conductive walls (270 V/pC) is 
two times larger than for perfectly conducting walls (133 
V/pC) and cannot be obtain as direct sum of the 
geometrical and the steady-state solution. 
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Figure 6: Comparison of transient and steady-state wakes. 
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Figure 7: Comparison of wakes “with” and “without” 
resistivity. 
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