
UNIVERSAL DOOCS SERVER BASED ON THE SCRIPT LANGUAGE

J. Szewinski, WUT-ISE, Warsaw, Poland; SINS, Swierk, Poland
K. Korzunowicz WUT-ISE, Warsaw, Poland

Abstract

This document describes the design and implementation
of the universal DOOCS1 server based on the script lan-
guage for the FLASH accelerator in DESY (Hamburg, Ger-
many). Server works with the DOOCS, which is used in
FLASH for machine control. The typical usage of this ap-
plication is to communicate with the measurement equip-
ment and control small facilities of the accelerator. The aim
of the project is to provide a tool which can make the server
creation easy for non-programmer users (typically physi-
cists). The heart of the server is the script language parser
which has been done using well known UNIX tools: bison
and flex. The complexity of designed language is compa-
rable with complexity of the Matlab language. Applica-
tion has additional features like possibility of attaching ex-
ternal dynamic libraries or possibility of defining the state
machines (more sequencer like). Server has been tested at
FLASH and currently is used by people who wish to con-
trol their equipment via DOOCS, with the minimal effort
of software development.

INTRODUCTION

Distributed Object Oriented Control System[1, 2] is de-
veloped at DESY (Hamburg, Germany), and used at the
FLASH accelerator for machine control. It supports vari-
ous devices and facilities, but on-going machine develop-
ment requires continuous support from the control systems
software side. The requirements for programmer to sup-
port DOOCS applications are following: C++ and OOP2

paradigm knowledge, DOOCS internals knowledge, multi-
threaded application development experience, UNIX sys-
tem programming experience and knowledge on available
external resources (VME bus or reference timing system).
Even average programmer needs at least few months to col-
lect required skills. In some cases it may be a bottle neck
of the development, especially for non-programmer users
such as physicists. On the other hand, scientists very often
use Matlab as the most natural tool for they work. This tool
is based on the platform independent programming lan-
guage which has simple and intuitive syntax, and does not
require compilations, linking, memory allocation, pointers
etc. Simple conclusion can be drawn here: A tool which can
talk with all DOOCS infrastructure, with Matlab compara-
ble flexibility and intuitive usage would be very helpful.

Of course, the power of Matlab is in algorithms available
in numerically optimized toolboxes, not in simplicity of the
language, and there is no competition on this field here.

1Distributed Object Oriented Control System
2Object Oriented Programming paradigm

GOAL

The main goal was to provide DOOCS compatible and
easy to use tool for users, in a such way, that user only
takes care of his application specific part, and is separated
from the system part of the server itself (which is more or
less the same in every DOOCS server).This is well known
technique, called separation of mechanism and policy, it
is one of the fundamental design principle in computer sci-
ence (this and others principles of good software design can
be found in [3]).

Beyond the ease of use, the final solution must be power-
ful enough to let user implement such a features like com-
plex algorithms, solve equations, access hardware, etc. To
fulfill this, it was required, first to describe all the opera-
tions that should be performed, and then server must read
this this description. To do this, a programming language
has been designed and implemented using well known
UNIX tools: bison and flex.

SERVER

A DOOCS server represents data as properties (often
called also process variables). There are many different
types of properties, but most common used are single nu-
merical value (integer or float), and a sequence of numeri-
cal values (used for plotting spectrums). From the end-user
point of view it is important what is happening when data
is read from or written to the particular property. DOOCS
server programmer may modify or extend functionality of
a property by inheriting from the base property class and
modifying selected methods.

In this case, four new property classes has been defined
in server project (by inheriting from the existing property
classes): two classes representing single numeric value,
one for integer and one for float type, and two classes repre-
senting sequence of numbers (also one for integers and one
for floats). The most significant modification in all classes,
was addition of user supplied callbacks execution during
the property read and write operations.

Except the modification of properties, callbacks execu-
tions has been also placed in all major global server rou-
tines, which are executed on particular events (startup,
shutdown, interrupt and timer handling, UNIX signal han-
dling, etc.) Server with built-in parser for parsing call-
backs script, can be compiled once, and then user is able
to change almost any server behavior by editing external
text (script) file, without need for another compilation.

Proceedings of EPAC08, Genoa, Italy TUPC151

07 Accelerator Technology Main Systems T25 Low Level RF

1425

SCRIPT LANGUAGE

As mentioned above, parser for reading script files has
been constructed using bison and flex. First, the attention
should be paid at the fact, that the server application is not
just a simple interpreter, which reads some file and imme-
diately do whatever was written there. There are state-
ments which are executed during script parsing (like cre-
ating properties objects), but major work is be done later,
when properties are accessed. The callbacks are not ex-
ecuted online while the script is processed, but it have to
be done during runtime. Also it is important to remember
that callbacks will be executed multiple times during server
lifetime.

To solve above issues, OOP and C++ comes with great
help. The language grammar (bison input) is described as
an abstract syntax tree (or just AST, see [4]). For language
statements (AST nodes), which have to executed later, it
fits very well to simply return instead of numeric value, a
pointer to the object, which will keep all information about
that particular language statement, and will provide method
like evaluate(), which will analyze kept data and return
proper numeric value on demand. Grammar rules may have
also multiple definitions, and OOP polymorphism is very
useful in this case, the following example will show it. The
simple DOOCS property can be declared in designed lan-
guage in the following way:

TEST_PROPERTY

{

read

{

y = a * (b + 5);

return y;

}

write

{

no writting support

return 0;

}

}

Figure 1: Example of simple property declaration in de-
signed language.

The example code in Fig. 1 declares a property, which
on the event of read calculates the following equation:

y = a ∗ (b + 5) (1)

The AST of above equation is following is shown in
Fig. 2.

The grammar for parsing this example is shown in Fig. 3
(simplified bison code).

The grammar item representing the expression (expr)
has multiple (alternative) definitions (for different arith-
metic operations, variables, etc), and it is also recursive
rule, because is use itself (expr) in own definitions. In
this case, it is convenient to provide a base abstract class

=

const
5

var
a

var
b

x
+

variables

var
y

Figure 2: Example syntax tree.

assign: text ’=’ expr { $$ = new c_assign($1,$3); };

expr: ’(’ expr ’)’ { $$ = $2; }

| number { $$ = new c_expr_const($1); }

| text { $$ = new c_expr_var($1); }

| expr ’*’ expr { $$ = new c_expr_mult($1,$3); }

| expr ’+’ expr { $$ = new c_expr_add($1,$3); };

Figure 3: Grammar rules for parsing equation (1).

c expr with an pure virtual method evaluate(), which
will be implemented in all derived classes c expr var,
c expr mult, etc. Regardless, which definition of expr
will match, always an object of class derived from c expr
will be returned, which can used without wondering of
which class it really is.

c_expr

+eval(): float

c_expr_const

-m_value: float

+eval(): float

c_expr_var

-m_var: string

+eval(): float

c_expr_add

-m_a: c_expr*

-m_b: c_expr*

+eval(): float

c_expr_mult

-m_a: c_expr*

-m_b: c_expr*

+eval(): float

Figure 4: Class diagram for the c expr class family.

Each descent class, which object is returned in answer
to a recursive grammar rule (c expr add, c expr mult in
the example), has member pointer(s) to one (or more) ob-
jects of base class c expr (again without knowing what
kind of object it will be finally). This approach dynam-
ically builds trees of objects during script parsing, where
each object represents exactly one node from AST of given
input. Objects are linked (via pointers) in such a way, that
evaluation of the root node will cause recursive evaluation
of all objects in the tree, which will result in taking partic-
ular actions or performing calculations.

TUPC151 Proceedings of EPAC08, Genoa, Italy

07 Accelerator Technology Main Systems

1426

T25 Low Level RF

FEATURES

Designed language has most of fundamental elements of
programming languages and own specific features:

• most ANSI C operators available

• variables (local and global scope)

• support for vectorized operations (like multiplying
whole table by a value)

• flow control statements (conditionals and loops)

• procedures (functions)

• most of functions from math.h available as an built-
ins

• DOOCS client functions available as an built-ins
(communications with other servers)

• execution time measurement routines (based on
gettimeofday)

• support for defining finite state machines and se-
quencers

• support for loading plugins (custom user dynamic li-
braries)

RESULTS

Presented solution has been developed at DESY (Ham-
burg, Germany) and used for various applications in
FLASH accelerator, especially in the prototyping phases
when there is lot of changes done in the short time. It was
used for LLRF and beam control mostly. Created servers
had their script files of over 1000 lines, and has been cre-
ated also by people with zero experience in DOOCS C++
programming, in the time much shorter than time need to
learn and understand DOOCS in traditional way.

CONCLUSIONS

This method of software automation, may be used with
different technologies (not only DOOCS, not only control
systems) to minimize hard-coded implementations, maxi-
mize flexibility by applying functionality (even complex)
from external source during runtime and protect users from
falling into unnecessary platform specific details and com-
plications. It helps to describe the user application on a
higher level of abstraction, independently from hardware
and platform issues, which results in faster development
and more understandable code, focused only on investi-
gated problem.

REFERENCES

[1] http://doocs.desy.de/

[2] K.Rehlich et al, “DOOCS: an Object Oriented Control Sys-
tem as the integrating part for the TTF Linac”, Proceedings
ICALEPCS 1997, Beijing, China

[3] Eric Raymond, ”The Art of Unix Programming”
Addison-Wesley 2003, ISBN 0-13-142901-9

[4] Joel Jones ”Abstract Syntax Tree Implementation Idioms”
Department of Computer Science, University of Alabama

Proceedings of EPAC08, Genoa, Italy TUPC151

07 Accelerator Technology Main Systems T25 Low Level RF

1427

