ON APPLICATION OF CHERENKOV RADIATION IN PRESENCE OF DISPERSIVE ANISOTROPIC MATERIALS TO DIAGNOSTICS OF ULTRARELATIVISTIC BEAMS*

A.V. Tyukhtin[#], Physical Dep. of St.-Petersburg State University, St.-Petersburg, Russia

Abstract

Analytical and numerical analyses of Cherenkov radiation in presence of a dispersive, anisotropic metamaterial are presented. A convenient method to determine the Lorenz factor of charged particles, γ , is based on measuring the frequencies of the harmonics generated in a waveguide. In this work, it is shown that this method for determining γ can be performed using certain metamaterials, such as an anisotropic medium with plasmatic dispersion. In particular, it is shown that the medium's parameters can be selected in such a way as to obtain a strong γ -dependence of the mode frequencies in either some predetermined narrow range of γ . As well it is possible to obtain apparent γ -dependence for a wide range including very large values of γ .

INTRODUCTION

Cherenkov radiation is extensively used for the detection of charged particles moving at relativistic speeds [1]. Using modern, artificial metamaterials as Cherenkov radiators can be advantageous over using conventional media [2, 3]. Metamaterials are artificial periodic structures made of small elements that are designed to possess specific electromagnetic properties [4–6]. As long as the periodicity and the size of the elements are smaller than the wavelengths of interest, an artificial structure can be described by a permittivity and permeability, just as in natural materials.

This work mainly focuses on the case of a nonmagnetic medium characterized by the following permittivity tensor:

$$\widehat{\varepsilon} = \begin{pmatrix} \varepsilon_{\perp} & 0 & 0\\ 0 & \varepsilon_{\perp} & 0\\ 0 & 0 & \varepsilon_{\parallel} \end{pmatrix}, \qquad (1)$$

$$\varepsilon_{\perp} = \varepsilon_{c\perp} - \frac{\omega_{p\perp}^2}{\omega^2 + 2i\omega_{d\perp}\omega}, \ \varepsilon_{\parallel} = \varepsilon_{c\parallel} - \frac{\omega_{p\parallel}^2}{\omega^2 + 2i\omega_{d\parallel}\omega}, \ (2)$$

where $\omega_{p\perp}$ and $\omega_{p\parallel}$ are the plasma frequencies, $\omega_{d\perp}$ and $\omega_{d\parallel}$ are the attenuation parameters, $\varepsilon_{c\perp}$ and $\varepsilon_{c\parallel}$ are some constants. Such a medium can be realized, for instance, with the help of a system of wires with small periods. In this case, plasma frequencies and attenuation parameters are given by the following formulae [4,5,7]:

$$\omega_{p\perp,\parallel} = c \sqrt{2\pi \left[d_{\perp,\parallel}^2 \ln \left(d_{\perp,\parallel} / r_{\perp,\parallel} \right) \right]^{-1}},$$

$$\omega_{d\perp,\parallel} = c^2 \left[4\sigma S_{\perp,\parallel} \ln \left(d_{\perp,\parallel} / r_{\perp,\parallel} \right) \right]^{-1},$$
(3)

where d_{\perp} , d_{\parallel} are periods of systems, and r_{\perp} , r_{\parallel} are radiuses of wires, S_{\perp} , S_{\parallel} are squares of cross sections of wires, σ is a conductivity of wires, and c is speed of light in vacuum (the symbol « \perp » are related to wires normal to the z-axis, and the symbol « \parallel » are related to wires parallel to the z-axis).

It is assumed that the medium fill a waveguide with a radius *a*. The main axis of the medium (i.e. *z* -axis) is coincident with the waveguide axis. A bunch of charge particles moves along the *z*-axis with a velocity $\vec{V} = c\beta \vec{e}_z$. The bunch dimension is suggested to be essentially less than typical wavelength.

SOME COMMON RESULTS

The components of the electric field behind the charge (z < Vt) can be written in the wave area (where the quasi-static field is negligible) using the following approximate form:

$$E_{\rho} = \frac{4q}{Va} \sum_{m=1}^{\infty} \operatorname{Re}\left\{\frac{i\omega_{m}J_{1}(\chi_{m}\rho/a)\exp(i\omega_{m}\zeta/V)}{\varepsilon_{\perp}(\omega_{m})\chi_{m}[J_{1}(\chi_{m})]^{2}(1+\delta_{m}+\kappa_{m})}\right\},$$
(4)
$$E_{z} = -\frac{4q}{a^{2}} \sum_{m=1}^{\infty} \operatorname{Re}\left\{\frac{J_{0}(\chi_{m}\rho/a)\exp(i\omega_{m}\zeta/V)}{\varepsilon_{\parallel}(\omega_{m})[J_{1}(\chi_{m})]^{2}(1+\delta_{m}+\kappa_{m})}\right\},$$
(4)

where $J_n(\xi)$ are Bessel functions, $\zeta = z - Vt$, and

$$\delta_{m} = \frac{\omega\beta^{2}}{2\left(\varepsilon_{\perp}\mu_{\perp}\beta^{2}-1\right)} \frac{d\left(\varepsilon_{\perp}\mu_{\perp}\right)}{d\omega}\bigg|_{\omega=\omega_{m}},$$

$$\kappa_{m} = \frac{\omega}{2}\left(\frac{1}{\varepsilon_{\parallel}}\frac{d\varepsilon_{\parallel}}{d\omega} - \frac{1}{\varepsilon_{\perp}}\frac{d\varepsilon_{\perp}}{d\omega}\right)\bigg|_{\omega=\omega_{m}}.$$
(5)

The values χ_m are roots of the function $J_0(\chi)$, and the harmonic frequencies ω_m are determined by the equation

$$\omega^{2}\varepsilon_{\parallel}(\omega)\left[1-\beta^{-2}\varepsilon_{\perp}^{-1}(\omega)\right] = c^{2}a^{-2}\chi_{m}^{2}.$$
 (6)

In the case of non-dispersive medium, it can be shown that the dependence of ω_m on the Lorenz-factor $\gamma = (1 - \beta^2)^{-1/2}$ is minor when $\gamma >> 1$, which is unfavourable for determining the energy of the ultrarelativistic particles. However, this disadvantage can be partially overcome by using certain anisotropic, dispersive media.

^{*} Work supported by SBIR DOE #DE-FG02-08ER85031, and the Russian Foundation for Basic Research (grant 06-02-16442-a) #tyukhtin@bk.ru

⁰⁶ Instrumentation, Controls, Feedback & Operational Aspects

In the paper [3] where we considered the case $\varepsilon_{\perp} = \varepsilon_{c\perp} = \text{const}$, we showed that under the condition $\varepsilon_{\perp} = 1$, $\omega_m(\gamma)$ is sensitive to values of γ below some maximum value $\gamma_{m\text{lim}}$ (if $\gamma > \gamma_{m\text{lim}}$, the wave harmonics is not excited). The value of $\gamma_{m\text{lim}}$ increases with decreasing ε_{\perp} . It is interesting that it is possible to obtain an almost linear dependence on γ for $\omega_1(\gamma)$ [3]. For certain values of $\varepsilon_{\perp} < 1$, the first mode is generated for an arbitrary magnitude of γ , and the dependence of ω_1 on γ is readily apparent for $\gamma \leq 10^4$ [3].

However, the case $\varepsilon_{\perp} = \text{const} < 1$ can be realized only approximately. Therefore, we consider the case when both $\omega_{p\perp} \neq 0$ and $\omega_{p\parallel} \neq 0$, i.e. both elements of the permittivity tensor in Eq. (1) depend on frequency. The frequencies of the harmonics are given by the following expression:

where $\Omega^2 = \omega_{p\parallel}^2 - \beta^2 \left(\omega_{p\parallel}^2 \varepsilon_{c\perp} + \omega_{p\perp}^2 \varepsilon_{c\parallel} + \varepsilon_{c\perp} c^2 \chi_m^2 a^{-2} \right)$ (the parameters $\omega_{d\perp}$, $\omega_{d\parallel}$ are assumed to be negligible).

Note that under the condition $\beta^2 \varepsilon_{c\perp} < 1$, a single series of travelling harmonics with frequencies of ω_{m1} is generated (the ω_{m2} frequencies are imaginary). Under the condition $\beta^2 \varepsilon_{c\perp} > 1$, two series of travelling modes with frequencies ω_{m1} and ω_{m2} are excited. An analysis shows that the frequency ω_{m1} is more convenient for measuring the Lorenz factor γ .

PERSPECTIVE APPLICATIONS TO BEAMS DIAGNOSTICS

By varying the medium parameters and the waveguide radius, different γ -dependencies for the harmonic's frequency, $v_m(\gamma)$, can be achieved. If the parameters a, $\varepsilon_{c\perp}$, $\varepsilon_{c\parallel}$, $\omega_{p\parallel} = 2\pi v_{p\parallel}$ are assumed to be fixed, a maximum γ -dependency of $v_m(\gamma)$ for the case when $\gamma >> 1$ can be achieved by selecting the value of $\omega_{p\perp} = 2\pi v_{p\perp}$ (which can be changed by varying the distance between wires and the wire thickness). Figure 1 shows an example of the frequencies' ($v_m = \omega_{m1}/2\pi$) dependence on γ , and figure 2 shows some typical spectra and wave fields. It can be shown that the γ dependence of $v_m(\gamma)$ is enough to determine γ for $\gamma \le 10^4$.

Other goal is obtaining strong dependence $v_m(\gamma)$ for some narrow range of values of γ . This can be achieved, 06 Instrumentation, Controls, Feedback & Operational Aspects for example, by carefully selecting the magnitudes of $\varepsilon_{c\perp}$. Note that we can vary this parameter because it is determined by the permittivity and the thickness of the base plates of the metamaterials. Figure 3 shows some examples of the γ -dependence of $v_m(\gamma)$ for different magnitudes of $\varepsilon_c = \varepsilon_{c\perp} = \varepsilon_{c\parallel}$. One can see that the range of strong γ -dependence for v_m drifts towards lower frequencies when ε_c increases.

Figure 1: Dependence of the harmonics' frequencies v_m (GHz) on γ : a = 10 cm, $v_{p\parallel} = 30 \text{ GHz}$, $v_{p\perp} = 0.574 \text{ GHz}$, $\varepsilon_{c\parallel} = \varepsilon_{c\perp} = 1$; the harmonics' numbers are shown near the curves.

Figure 2: Amplitudes of harmonics of E_{ρ} and the wave field behind the charge (V/m): q = -1 pC, $\gamma = 100$, $\rho = 5 cm$, and other parameters are the same as in Fig.1.

Figure 3: Dependence of harmonics' frequencies on γ : a = 10 cm, $v_{p\parallel} = 30 \text{ GHz}$, $\varepsilon_{c\parallel} = \varepsilon_{c\perp} = 1.1$, $v_{p\perp} = 0$ (a) and $v_{p\perp} = 1 \text{ GHz}$ (b); the harmonics' numbers are shown near the curves.

Figure 4: Amplitudes of harmonics of component E_z (V/m): $\gamma = 3.2$ (a), $\gamma = 3.3$ (b), $v_{p\perp} = 1 \text{ GHz}$, |q| = 1 pC, and other parameters are the same as in Fig.3.

Figure 5: Dependence of the 1st harmonic frequency v_1 (GHz) on γ : a = 10 cm; $v_{p||} = 30 \text{ GHz}$; $\varepsilon_{c||} = \varepsilon_{c\perp} = 1.02 (1a, 1b), 1.05 (2a, 2b), 1.15 (3a, 3b)$; $v_{p\perp} = 0 (1a, 2a, 3a), v_{p\perp} = 1 \text{ GHz} (1b, 2b, 3b)$.

Figure 4 shows the spectra for two close magnitudes of γ . One can see that they are essentially distinguishable.

Figure 5 illustrates the dependence of $v_1(\gamma)$ for different values of $\varepsilon_c = \varepsilon_{c\parallel} = \varepsilon_{c\perp}$ and $v_{p\perp}$. One can see that the parameter ε_c has an influence on the smoothness of this dependence. If $v_{p\perp} = 0$, the real frequency $v_1(\gamma)$ is equal to 0 for $\gamma > \gamma_{1\text{lim}}$. This fact allows one to design a "reverse" threshold Cherenkov detector. Such a detector would register all particles with $\gamma < \gamma_{1\text{lim}}$. Increasing $\omega_{p\perp}$ leads to smoother functions for $v_m(\gamma)$. It is important to note that relatively small variations in the parameter ε_c leads to an essential shift of the range of the strong dependence $v_m(\gamma)$. These facts may be useful for designing Cherenkov detectors for different purposes.

REFERENCES

- V.P. Zrelov, "Cherenkov Radiation in High-Energy Physics", Israel Program for Scientific Translations, Jerusalem, 1970.
- [2] A.V. Tyukhtin, S.P. Antipov, A. Kanareykin, P. Schoessow, PAC'07, Albuquerque, July 2007, FRPMN064, p.4156 (2007); http://www.JACoW.org.
- [3] A.V. Tyukhtin, Tech. Phys. Lett. 34 (2008), in press.
- [4] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773.
- [5] A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Phys. Rev. Lett. 91 (2003) 037401.
- [6] R.W. Ziolkowski, IEEE Trans. AP 51 (2003) 1516.
- [7] S. Antipov, L. Spentzouris, W. Liu, W. Gai, J.G. Power, J. Appl. Phys. 102 (2007) 034906.