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Abstract

Analytical and numerical analyses of Cherenkov 

radiation in presence of a dispersive, anisotropic 

metamaterial are presented. A convenient method to 

determine the Lorenz factor of charged particles, , is 

based on measuring the frequencies of the harmonics 

generated in a waveguide. In this work, it is shown that 

this method for determining  can be performed using 

certain metamaterials, such as an anisotropic medium 

with plasmatic dispersion. In particular, it is shown that 

the medium’s parameters can be selected in such a way as 

to obtain a strong -dependence of the mode frequencies 

in either some predetermined narrow range of . As well 

it is possible to obtain apparent -dependence for a wide 

range including very large values of .

INTRODUCTION

Cherenkov radiation is extensively used for the 

detection of charged particles moving at relativistic 

speeds [1]. Using modern, artificial metamaterials as 

Cherenkov radiators can be advantageous over using 

conventional media [2, 3]. Metamaterials are artificial 

periodic structures made of small elements that are 

designed to possess specific electromagnetic properties 

[4–6]. As long as the periodicity and the size of the 

elements are smaller than the wavelengths of interest, an 

artificial structure can be described by a permittivity and 

permeability, just as in natural materials.  

This work mainly focuses on the case of a non-

magnetic medium characterized by the following 

permittivity tensor:  
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where p  and ||p  are the plasma frequencies, d

and ||d  are the attenuation parameters, c  and ||c  are 

some constants. Such a medium can be realized, for 

instance, with the help of a system of wires with small 

periods. In this case, plasma frequencies and attenuation 

parameters are given by the following formulae [4,5,7]: 
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where ||, dd  are periods of systems, and ||, rr  are 

radiuses of wires, ||, SS  are squares of cross sections of 

wires,  is a conductivity of wires, and c  is speed of 

light in vacuum (the symbol « » are related to wires 

normal to the z -axis, and the symbol « || » are related to 

wires parallel to the z -axis).  

It is assumed that the medium fill a waveguide with a 

radius a . The main axis of the medium (i.e. z -axis) is 

coincident with the waveguide axis. A bunch of charge 

particles moves along the z -axis with a velocity 

zecV . The bunch dimension is suggested to be 

essentially less than typical wavelength.  

SOME COMMON RESULTS 

The components of the electric field behind the charge 

( Vtz ) can be written in the wave area (where the 

quasi-static field is negligible) using the following 

approximate form:   
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where )(nJ  are Bessel functions, Vtz , and
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The values m  are roots of the function )(0J , and the 

harmonic frequencies m  are determined by the equation  
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In the case of non-dispersive medium, it can be shown 

that the dependence of m  on the Lorenz-factor 

21
2

1  is minor when 1 , which is 

unfavourable for determining the energy of the 

ultrarelativistic particles. However, this disadvantage can 

be partially overcome by using certain anisotropic, 

dispersive media.  
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In the paper [3] where we considered the case 

constc , we showed that under the condition 

1 , )(m  is sensitive to values of  below some 

maximum value limm  (if limm , the wave 

harmonics is not excited). The value of limm  increases 

with decreasing . It is interesting that it is possible to 

obtain an almost linear dependence on  for )(1  [3]. 

For certain values of 1, the first mode is generated 

for an arbitrary magnitude of , and the dependence of 

1  on  is readily apparent for 
4

10  [3].  

However, the case 1const  can be realized only 

approximately. Therefore, we consider the case when 

both 0p  and 0||p , i.e. both elements of the 

permittivity tensor in Eq. (1) depend on frequency.  The 

frequencies of the harmonics are given by the following 

expression: 
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(the parameters d , ||d  are assumed to be negligible).  

Note that under the condition 1
2

c , a single 

series of travelling harmonics with frequencies of 1m  is 

generated (the 2m  frequencies are imaginary). Under 

the condition 1
2

c , two series of travelling modes 

with frequencies 1m  and 2m  are excited. An analysis 

shows that the frequency 1m  is more convenient for 

measuring the Lorenz factor .

PERSPECTIVE APPLICATIONS TO 

BEAMS DIAGNOSTICS  

By varying the medium parameters and the waveguide 

radius, different -dependencies for the harmonic’s 

frequency, )(m , can be achieved. If the parameters a ,

c , ||c , |||| 2 pp  are assumed to be fixed, a 

maximum -dependency of )(m  for the case when 

1 can be achieved by selecting the value of 

pp 2  (which can be changed by varying the 

distance between wires and the wire thickness). Figure 1 

shows an example of the frequencies’ ( 21mm )

dependence on , and figure 2 shows some typical 

spectra and wave fields. It can be shown that the -

dependence of  )(m  is enough to determine  for 

4
10 .

Other goal is obtaining strong dependence )(m  for 

some narrow range of values of . This can be achieved, 

for example, by carefully selecting the magnitudes of 

c . Note that we can vary this parameter because it is 

determined by the permittivity and the thickness of the 

base plates of the metamaterials. Figure 3 shows some 

examples of the -dependence of )(m  for different 

magnitudes of ||ccc . One can see that the range 

of strong -dependence for m  drifts towards lower 

frequencies when c  increases.   

Figure 1: Dependence of the harmonics’ frequencies 

GHz)(m  on : cm10a , GHz30||p ,

GHz574.0p , 1|| cc ; the harmonics’ 

numbers are shown near the curves.  

Figure 2: Amplitudes of harmonics of E  and the wave 

field behind the charge (V/m): pCq 1 , 100 ,

cm5 , and other parameters are the same as in Fig.1.
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Figure 3: Dependence of harmonics’ frequencies on :

cm10a , GHz30||p , 1.1|| cc , 0p (a) 

and GHz1p (b); the harmonics’ numbers are shown 

near the curves. 

Figure 4: Amplitudes of harmonics of component zE

(V/m): 2.3 (a), 3.3 (b), GHz1p , pCq 1 ,

and other parameters are the same as in Fig.3.  

Figure 5: Dependence of the 1
st
 harmonic frequency 

GHz)(1  on : cm10a ; GHz30||p ;

)33(151)22(051)11(021 ba,.,ba,.,ba,.cc|| ;

)3,2,1(0 aaap , )321(GHz1 bb,b,p .

Figure 4 shows the spectra for two close magnitudes of 

. One can see that they are essentially distinguishable.  

Figure 5 illustrates the dependence of 1  for 

different values of ccc ||  and p . One can see 

that the parameter c  has an influence on the smoothness 

of this dependence.  If 0p , the real frequency 1

is equal to 0 for lim1 . This fact allows one to design 

a “reverse” threshold Cherenkov detector. Such a detector 

would register all particles with lim1 . Increasing 

p  leads to smoother functions for m . It is 

important to note that relatively small variations in the 

parameter c  leads to an essential shift of the range of 

the strong dependence m . These facts may be useful 

for designing Cherenkov detectors for different purposes. 

REFERENCES 

[1] V.P. Zrelov, “Cherenkov Radiation in High-Energy 

Physics”, Israel Program for Scientific Translations, 

Jerusalem, 1970.  

[2] A.V. Tyukhtin, S.P. Antipov, A. Kanareykin, P. 

Schoessow, PAC’07, Albuquerque, July 2007, 

FRPMN064, p.4156 (2007); http://www.JACoW.org. 

[3] A.V. Tyukhtin, Tech. Phys. Lett. 34 (2008), in press.   

[4] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, 

Phys. Rev. Lett. 76 (1996) 4773.  

[5] A.A.  Zharov, I.V. Shadrivov, Y.S. Kivshar, Phys. 

Rev. Lett. 91 (2003) 037401.  

[6] R.W. Ziolkowski, IEEE Trans. AP 51 (2003) 1516.  

[7] S. Antipov, L. Spentzouris, W. Liu, W. Gai, J.G. 

Power, J. Appl. Phys. 102 (2007) 034906.  

1

m

2 2.5 3 3.5
0

10

20

30

2345

1

m

2345

2 2.5 3 3.5 4
0

10

20

30

a

b

a

0 10 20 30
0

5

10

b

0 10 20 30
0

5

10

)GHz(m

)(

0

m

z
E

)(

0

m

z
E

2 4 6 10
0

8

10

20

30

a1 1b

a2 2b

a3 3b

1

TUPC104 Proceedings of EPAC08, Genoa, Italy

06 Instrumentation, Controls, Feedback & Operational Aspects

1304

T03 Beam Diagnostics and Instrumentation


