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Abstract 
 Noise sources in the RF system of an accelerator 

produce longitudinal emittance increase or particle loss. 

This noise is inherent, from the beam-control system 

electronics, external sources or high power components, 

or can be purposely injected for a specific need such as 

bunch distribution modification or controlled emittance 

increase. Simulations to study these effects on the beam 

require precise reproduction either of the total noise 

measured on the hardware, or of the noise spectrum to be 

injected and optimized to produce the desired changes. In 

the latter case the ‘optimized’ noise source has also to be 

created in real-time to actually excite the beam via the RF 

system. This paper describes a new algorithm to create 

noise spectra of arbitrary spectral density varying with 

cycle time. It has very good statistical properties and 

effectively infinite period length, important for long 

simulation runs. It is spectrally clean and avoids 

undesired mirror spectra. Coded in C++, it is flexible and 

fast. Used extensively in simulations it has also 

successfully created controlled emittance increase in the 

SPS by the injection of artificial real-time RF noise. 

MOTIVATION 

In the LHC coast undesired RF noise may blow up 

bunches and must be avoided. However, added noise is 

required to blow up bunches during the ramp to produce 

beam stability in both the SPS and in the LHC. In this 

case the noise excitation spectrum has to follow the 

varying synchrotron frequency spectrum. To study these 

cases, a very flexible digital noise generator was 

developed for a simulation program [1]. Priviously single 

tailored noise-spectra for blow-up were created by 

complex hardware means (e.g. [2]). For the blow-up in 

the SPS with commercial instruments difficulties were 

encountered due to spectral tails, mirror-spectra and low 

flexibility. To solve this the digital noise generator was 

used by uploading its data onto an Arbitrary Wave 

Generator and then playing back the waveform (for up to 

6 s at 10 kHz rate), successfully blowing up the proton 

bunches in the SPS.  

For LHC about 20 min of slow blow-up are needed 

requiring too much data for direct playback from an 

AWG. But it could be realized by timesharing with 

calculation, buffering and output on a single platform; this 

will even allow spectral corrections in real-time (spectral 

feed back). 

NOISE WITH CONSTANT SPECTRUM 

We start with a complex array {gn} filled with time-

domain white noise data for 1  n  N, with N a multiple 

of 4. The spectrum obtained from {gn} by Fourier-

transform, restricted to positive frequencies exclusively, is 

weighted with the user supplied spectral (amplitude) 

weight function. An inverse Fourier-transform results in a 

set {rn} of N time-domain data with the desired, still time-

invariant, noise spectrum.   

The weight function has to be defined in the range 0 

to 1; later it will be scaled linearly onto the range fLow to 

fUp for the (possibly time-varying) absolute frequency 

band. The weight function should be proportional to the 

square root of the desired local spectral ‘power’ density; 

absolute amplitudes are irrelevant at this stage. 

Practically {gn} is created by 

(1)          
    gn

 =  exp(2 i x2n
) 2 ln x2n+1

 

with x2n and x2n+1 generated by two independent calls to a 

top quality pseudo-random generator with equi-

distributed output between 0 and 1, the ‘Mersenne 

Twister’ [3]. The latter has extensive freedom from 

sequential correlations and a quasi-infinite period length 

of about 106000 data samples. The arrays {Re(gn)} and 

{Im(gn)} then present (mutually correlated) zero-centred 

Gaussian distributions with =1 (see e.g. [4]) 

 
JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz    20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [ 2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT=   1.034 rmsF* fB=   1.027}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz    20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [ 2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT=   1.046 rmsF* fB=   1.036}  
JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz    20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [ 2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT=   1.069 rmsF* fB=   1.075}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz    20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [ 2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT=    1.11 rmsF* fB=   1.116}  

Fig. 1: FFT of noise data strings designed to target 

different (amplitude) spectral distribution: rectangular 

(top-left), trapezoidal (top-right), triangular (bottom-left, 

as used in the SPS blow-ups) and cos2 (bottom-right). 

There are sharp spectral ends and no side-lobes nor tails. 

(Green: linear scale, light blue: log scale; ‘measured’ in 

‘sliding average’ mode with rectangular window) 

To avoid periodicity and discontinuities for runs with 

more than N data, a second set {sn} is always used in 

parallel. It is created exactly as {rn} but with independent 

random numbers. With a constant parameter 0 <2  a 

new variable can be defined: un= rn·cos  + sn·sin . It can 

be shown [4] that {un} has the same spectral properties as 

its parent arrays. Here  will change as slowly as possible 

like n=2 ·n/N, introducing a frequency component 

corresponding to the lowest one present in the initial 
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spectra, hence changing the spectral distribution only 

insignificantly with respect to the user-defined one. 

Now at [n modulo N]=3N/4 {rn} and when n is multiple 

of N (i.e. [n modulo N]=0) {sn} can be replaced by a new, 

statistically independent array without discontinuities nor 

periodicities in {un}. Since even for indices only close to 

the above special ones the concerned weight functions 

sin  or cos  are close to zero, no transients appear at 

the change of arrays.  

This procedure then guarantees, for all practical 

purposes, an unlimited supply of non-periodic noise data 

samples of high statistical quality having the desired 

spectrum on any sequential sub-set. 

NOISE WITH VARIABLE SPECTRUM 

When music, recorded (analogue) on a magnetic tape, 

is played back faster/slower than recorded, all frequencies 

appear higher/lower by the ratio of playback speed to 

recording speed; the same effect is used here in digital 

realization. Since one has to satisfy all irrational speed 

ratios, the time domain signal coming from the above 

Fourier transform has to be interpolated smoothly, or 

significant phantom side lobes may appear on the 

spectrum. 

In a (discrete) spectral representation the highest 

represented frequency component fmax has in time domain 

only two data samples per oscillation, preventing smooth 

interpolation up to this frequency. But one can represent 

the precise equivalent of the present spectrum of N 

frequency channels as an L·N channel spectrum (with e.g. 

L=8) by appending at the high frequency end (L–1)·N 

channels with zero amplitude (Fig. 2). Then – after L·N-

channel Fourier transform to time domain – all initial 

frequency channels are presented by L times the number 

of points per oscillation, allowing good smooth 

interpolation for the whole frequency range up to fmax. 

This method is applied here; practically it is incorporated 

in the creation of the stable spectra of the previous 

chapter, delivering an L times denser (complex) data 

stream ready for smooth interpolation 

f

A ---- FFT ---->

freq.-domain
N f-channels

time-domain, ndata=N

f

A

A    =     0

---- FFT ---->

freq.-domain
4*N f-channels
(3*N channels zero)

time-domain, ndata=4*N

 

Fig. 2: Left plots: frequency domain. Right plots: time 

domain, dots  discrete Fourier transform, lines  the 

underlying (smooth) function. Top: original frequency 

domain representation, bottom: appended frequency 

domain representation. (displayed L=4, in the code L=8). 

Such smooth interpolation with correspondingly chosen 

step-width allows any ratio of playback to original speed 

within the required range to be realized (Fig. 3). For a 

constant time step t (i.e. play-back rate fClock=1/ t) it is 

then possible by continuous adjustment of the above 

interpolation step-width to create a data stream with a 

spectrum between f=0 and f= f=fUp(t)-fLow(t) such that its 

amplitude distribution, x-scaled from [0, f] to [0,1], is 

identical to the user-defined spectral amplitude-function. 

 

play-back with invariant
time step t = 1/fClock

adapted step width
while interpolating

 

Fig. 3: Left plots: Smoothly interpolated data from the 

same Fourier transform into time-domain; left-bottom: 

half the step width of left-top. Right plots: playback with 

identical time-steps t=1/fClock: ‘bottom procedure’ 

produces data of half the frequency of ‘top procedure’. 

This spectrum has to be mixed up with fLow to get the 

band between fLow and fUp as desired. This can be done 

easily by multiplying with the (unit) complex phase factor 

ek, turning at time t=k· t in the complex plane after each 

clock-tick t (in positive sense) as 

(2)       ek +1  =  ek exp(2 i f
Low

(k )
/ fClock );     | ek |  =  1 

The upper index k of fLow indicates that fLow might have to 

be adapted to match the required, possibly time 

dependent, lower band limit frequency fLow(t=k· t). 

The real part (ignoring the imaginary part) of the final 

complex data is used as noise-data-output, avoiding any 

mirror spectra due to always-positive frequencies. 

 

 
Fig. 4: Screenshot (Polaroid) from a digital signal 

analyzer: the measured (constant) ‘triangular noise’ 

(195 Hz – 225 Hz) was created by the digital noise 

generator and played back from an AWG at 10 kHz rate 

(applied for bunch blow-up in the SPS in coast). 

Before transferring the data, it is scaled by a constant 

factor such that the rms-value of the total output stream 

corresponds to a user-defined rms-value X0; intrinsically 

this rms-value remains constant even for variations of fUp 

and fLow. This means also that a change of the spectral 

bandwidth fUp-fLow causes the local noise ‘power’ to 

change inversely to the bandwidth scaling-factor. This can 
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be modified with the time dependent relative amplitude 

arel(t) having the initial (and default) value 1. 

The noise data is observed stroboscopically at the rate 

fClock, hence any line at frequency f (< fClock/2) has a twin 

line at f’= fClock–f (>fClock/2). To avoid unpredictable 

results, the desired spectral density function should only 

be specified for a range between 0  fLow < fUp < fClock/2 

(not fClock). In any case fClock has to be chosen large enough 

to avoid too much granularity of the output. 

MONOCHROMATIC LINES 

In LHC klystrons are used as power amplifier; these 

have a strong dependence of the RF phase from the DC 

voltage. Therefore RF phase noise shows up at multiples 

of the power grid frequency. The measured phase noise 

line spectrum has been reconstructed and the beam 

simulated [5]. Also ‘brushing through a bunch’ with a 

sliding monochromatic line to produce ‘hollow bunches’ 

has shown the desired effects on the bunch profile. 

To apply this in practice a set of M monochromatic 

lines of given (real) amplitude a(m), frequency f(m) and 

starting phase (m) (1 m M) can be ‘switched on’, alone 

or superimposed on the other ‘smooth’ noise. Each line 

starts with the complex status time-domain variable 

(3)       
    
a0

(m)
 =  a

(m)
exp 2 i

(m)( )  
and advances (positively) at each clock-tick – labelled by 

the index k – as 

(4)  
    
a

k +1

(m)
 =  a

k

(m)
exp 2 i f

(m)
/ f

Clock( )  

All lines can be produced in two modes: either with 

stable f(m) – as for power grid multiples – or automatically 

appearing as an integral part of a varying ‘smooth’ 

spectrum; in this case f(m) defines the position with respect 

to the initial fLow and fUp. The user may ‘update manually’ 

any ‘fixed’ fm . 

 
JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz    20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [ 1.5- 2.5] kHz {819200 T} {81.9 [s] rmsT=  0.3948 rmsF* fB=  0.3848}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz    20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [ 1.5- 2.5] kHz {819200 T} {81.9 [s] rmsT=   1.155 rmsF* fB=   1.087}  
Fig. 5: Snapshot of two fixed lines (left) and a variable 

smooth spectrum with incorporated lines (right). (Green: 

linear scale, light blue: log scale) 

PRACTICAL APPLICATIONS 

The package (more details in [4]) is written in C++ and 

kept as self-sufficient as possible. Initialization is done by 

a call defining basic parameters such as fClock, the desired 

rms output value X0 (valid for arel=1) and the spectral 

distribution function (-pointer); this function is valid for 

the whole run. Before any output the initial fLow, fUp and 

relative amplitude factor arel (if 1) have to be defined. 

From then on each call to “NextVNoise( )” delivers one  

(real) noise data corresponding to the following clock-

tick. As long as fLow, fUp and arel are not changed the 

spectrum remains constant; it is up to the user to update 

these parameter as function of time (clock-tick k) calling 

one of the supplied functions as “SetBandPos(flow,fup)”. 

The output has a total rms-value of X0 (for arel=1) as 

defined by the user; it is his task to convert (in hardware 

or software) the numerical output to the desired e.g. MV 

or degree. 

Monochromatic lines – if required – have to be 

initialized and requested independently; the ‘stable’ line-

frequencies may be updated as desired by similar calls. 

 

 
Fig. 6: Graphical User Interface screenshot (digital) as 

used for the SPS blow-up tests. Top-left: GUI-fields for 

input specifications of the spectral shape (as trapezium) 

and three linear interpolation points for fLow(t), fUp(t) and 

arel(t); bottom-left: [0–1] normalized spectrum, bottom-

right: time-domain output representation. The absolute 

noise-amplitude was adjusted with the AWG output level. 

CONCLUSION 

The package has proven its utility and versatility in 

applications in real-time [6][7] and off-line simulations 

[5] for CERN’s accelerators and future collider LHC. 
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