
DIGITAL GENERATION OF NOISE-SIGNALS WITH ARBITRARY

CONSTANT OR TIME-VARYING SPECTRA

J. Tückmantel, CERN, Geneva, Switzerland

Abstract
 Noise sources in the RF system of an accelerator

produce longitudinal emittance increase or particle loss.

This noise is inherent, from the beam-control system

electronics, external sources or high power components,

or can be purposely injected for a specific need such as

bunch distribution modification or controlled emittance

increase. Simulations to study these effects on the beam

require precise reproduction either of the total noise

measured on the hardware, or of the noise spectrum to be

injected and optimized to produce the desired changes. In

the latter case the ‘optimized’ noise source has also to be

created in real-time to actually excite the beam via the RF

system. This paper describes a new algorithm to create

noise spectra of arbitrary spectral density varying with

cycle time. It has very good statistical properties and

effectively infinite period length, important for long

simulation runs. It is spectrally clean and avoids

undesired mirror spectra. Coded in C++, it is flexible and

fast. Used extensively in simulations it has also

successfully created controlled emittance increase in the

SPS by the injection of artificial real-time RF noise.

MOTIVATION

In the LHC coast undesired RF noise may blow up

bunches and must be avoided. However, added noise is

required to blow up bunches during the ramp to produce

beam stability in both the SPS and in the LHC. In this

case the noise excitation spectrum has to follow the

varying synchrotron frequency spectrum. To study these

cases, a very flexible digital noise generator was

developed for a simulation program [1]. Priviously single

tailored noise-spectra for blow-up were created by

complex hardware means (e.g. [2]). For the blow-up in

the SPS with commercial instruments difficulties were

encountered due to spectral tails, mirror-spectra and low

flexibility. To solve this the digital noise generator was

used by uploading its data onto an Arbitrary Wave

Generator and then playing back the waveform (for up to

6 s at 10 kHz rate), successfully blowing up the proton

bunches in the SPS.

For LHC about 20 min of slow blow-up are needed

requiring too much data for direct playback from an

AWG. But it could be realized by timesharing with

calculation, buffering and output on a single platform; this

will even allow spectral corrections in real-time (spectral

feed back).

NOISE WITH CONSTANT SPECTRUM

We start with a complex array {gn} filled with time-

domain white noise data for 1 n N, with N a multiple

of 4. The spectrum obtained from {gn} by Fourier-

transform, restricted to positive frequencies exclusively, is

weighted with the user supplied spectral (amplitude)

weight function. An inverse Fourier-transform results in a

set {rn} of N time-domain data with the desired, still time-

invariant, noise spectrum.

The weight function has to be defined in the range 0

to 1; later it will be scaled linearly onto the range fLow to

fUp for the (possibly time-varying) absolute frequency

band. The weight function should be proportional to the

square root of the desired local spectral ‘power’ density;

absolute amplitudes are irrelevant at this stage.

Practically {gn} is created by

(1)
 gn

 = exp(2 i x2n
) 2 ln x2n+1

with x2n and x2n+1 generated by two independent calls to a

top quality pseudo-random generator with equi-

distributed output between 0 and 1, the ‘Mersenne

Twister’ [3]. The latter has extensive freedom from

sequential correlations and a quasi-infinite period length

of about 106000 data samples. The arrays {Re(gn)} and

{Im(gn)} then present (mutually correlated) zero-centred

Gaussian distributions with =1 (see e.g. [4])

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.034 rmsF* fB= 1.027}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.046 rmsF* fB= 1.036}
JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.069 rmsF* fB= 1.075}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [2.0- 4.0] kHz {460800 T} {46.1 [s] rmsT= 1.11 rmsF* fB= 1.116}

Fig. 1: FFT of noise data strings designed to target

different (amplitude) spectral distribution: rectangular

(top-left), trapezoidal (top-right), triangular (bottom-left,

as used in the SPS blow-ups) and cos2 (bottom-right).

There are sharp spectral ends and no side-lobes nor tails.

(Green: linear scale, light blue: log scale; ‘measured’ in

‘sliding average’ mode with rectangular window)

To avoid periodicity and discontinuities for runs with

more than N data, a second set {sn} is always used in

parallel. It is created exactly as {rn} but with independent

random numbers. With a constant parameter 0 <2 a

new variable can be defined: un= rn·cos + sn·sin . It can

be shown [4] that {un} has the same spectral properties as

its parent arrays. Here will change as slowly as possible

like n=2 ·n/N, introducing a frequency component

corresponding to the lowest one present in the initial

Proceedings of EPAC08, Genoa, Italy TUPC103

06 Instrumentation, Controls, Feedback & Operational Aspects T03 Beam Diagnostics and Instrumentation

1299

spectra, hence changing the spectral distribution only

insignificantly with respect to the user-defined one.

Now at [n modulo N]=3N/4 {rn} and when n is multiple

of N (i.e. [n modulo N]=0) {sn} can be replaced by a new,

statistically independent array without discontinuities nor

periodicities in {un}. Since even for indices only close to

the above special ones the concerned weight functions

sin or cos are close to zero, no transients appear at

the change of arrays.

This procedure then guarantees, for all practical

purposes, an unlimited supply of non-periodic noise data

samples of high statistical quality having the desired

spectrum on any sequential sub-set.

NOISE WITH VARIABLE SPECTRUM

When music, recorded (analogue) on a magnetic tape,

is played back faster/slower than recorded, all frequencies

appear higher/lower by the ratio of playback speed to

recording speed; the same effect is used here in digital

realization. Since one has to satisfy all irrational speed

ratios, the time domain signal coming from the above

Fourier transform has to be interpolated smoothly, or

significant phantom side lobes may appear on the

spectrum.

In a (discrete) spectral representation the highest

represented frequency component fmax has in time domain

only two data samples per oscillation, preventing smooth

interpolation up to this frequency. But one can represent

the precise equivalent of the present spectrum of N

frequency channels as an L·N channel spectrum (with e.g.

L=8) by appending at the high frequency end (L–1)·N

channels with zero amplitude (Fig. 2). Then – after L·N-

channel Fourier transform to time domain – all initial

frequency channels are presented by L times the number

of points per oscillation, allowing good smooth

interpolation for the whole frequency range up to fmax.

This method is applied here; practically it is incorporated

in the creation of the stable spectra of the previous

chapter, delivering an L times denser (complex) data

stream ready for smooth interpolation

f

A ---- FFT ---->

freq.-domain
N f-channels

time-domain, ndata=N

f

A

A = 0

---- FFT ---->

freq.-domain
4*N f-channels
(3*N channels zero)

time-domain, ndata=4*N

Fig. 2: Left plots: frequency domain. Right plots: time

domain, dots discrete Fourier transform, lines the

underlying (smooth) function. Top: original frequency

domain representation, bottom: appended frequency

domain representation. (displayed L=4, in the code L=8).

Such smooth interpolation with correspondingly chosen

step-width allows any ratio of playback to original speed

within the required range to be realized (Fig. 3). For a

constant time step t (i.e. play-back rate fClock=1/ t) it is

then possible by continuous adjustment of the above

interpolation step-width to create a data stream with a

spectrum between f=0 and f= f=fUp(t)-fLow(t) such that its

amplitude distribution, x-scaled from [0, f] to [0,1], is

identical to the user-defined spectral amplitude-function.

play-back with invariant
time step t = 1/fClock

adapted step width
while interpolating

Fig. 3: Left plots: Smoothly interpolated data from the

same Fourier transform into time-domain; left-bottom:

half the step width of left-top. Right plots: playback with

identical time-steps t=1/fClock: ‘bottom procedure’

produces data of half the frequency of ‘top procedure’.

This spectrum has to be mixed up with fLow to get the

band between fLow and fUp as desired. This can be done

easily by multiplying with the (unit) complex phase factor

ek, turning at time t=k· t in the complex plane after each

clock-tick t (in positive sense) as

(2) ek +1 = ek exp(2 i f
Low

(k)
/ fClock); | ek | = 1

The upper index k of fLow indicates that fLow might have to

be adapted to match the required, possibly time

dependent, lower band limit frequency fLow(t=k· t).

The real part (ignoring the imaginary part) of the final

complex data is used as noise-data-output, avoiding any

mirror spectra due to always-positive frequencies.

Fig. 4: Screenshot (Polaroid) from a digital signal

analyzer: the measured (constant) ‘triangular noise’

(195 Hz – 225 Hz) was created by the digital noise

generator and played back from an AWG at 10 kHz rate

(applied for bunch blow-up in the SPS in coast).

Before transferring the data, it is scaled by a constant

factor such that the rms-value of the total output stream

corresponds to a user-defined rms-value X0; intrinsically

this rms-value remains constant even for variations of fUp

and fLow. This means also that a change of the spectral

bandwidth fUp-fLow causes the local noise ‘power’ to

change inversely to the bandwidth scaling-factor. This can

TUPC103 Proceedings of EPAC08, Genoa, Italy

06 Instrumentation, Controls, Feedback & Operational Aspects

1300

T03 Beam Diagnostics and Instrumentation

be modified with the time dependent relative amplitude

arel(t) having the initial (and default) value 1.

The noise data is observed stroboscopically at the rate

fClock, hence any line at frequency f (< fClock/2) has a twin

line at f’= fClock–f (>fClock/2). To avoid unpredictable

results, the desired spectral density function should only

be specified for a range between 0 fLow < fUp < fClock/2

(not fClock). In any case fClock has to be chosen large enough

to avoid too much granularity of the output.

MONOCHROMATIC LINES

In LHC klystrons are used as power amplifier; these

have a strong dependence of the RF phase from the DC

voltage. Therefore RF phase noise shows up at multiples

of the power grid frequency. The measured phase noise

line spectrum has been reconstructed and the beam

simulated [5]. Also ‘brushing through a bunch’ with a

sliding monochromatic line to produce ‘hollow bunches’

has shown the desired effects on the bunch profile.

To apply this in practice a set of M monochromatic

lines of given (real) amplitude a(m), frequency f(m) and

starting phase (m) (1 m M) can be ‘switched on’, alone

or superimposed on the other ‘smooth’ noise. Each line

starts with the complex status time-domain variable

(3)

a0

(m)
 = a

(m)
exp 2 i

(m)()
and advances (positively) at each clock-tick – labelled by

the index k – as

(4)

a

k +1

(m)
 = a

k

(m)
exp 2 i f

(m)
/ f

Clock()

All lines can be produced in two modes: either with

stable f(m) – as for power grid multiples – or automatically

appearing as an integral part of a varying ‘smooth’

spectrum; in this case f(m) defines the position with respect

to the initial fLow and fUp. The user may ‘update manually’

any ‘fixed’ fm .

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [1.5- 2.5] kHz {819200 T} {81.9 [s] rmsT= 0.3948 rmsF* fB= 0.3848}

JT 3582A Digital Signal AnalyzerA:<0,0.05> 1/ Hz 20*log10(A^2/Hz):<-126,-26> dB1

0.0 Hz 5.000 kHzBand [1.5- 2.5] kHz {819200 T} {81.9 [s] rmsT= 1.155 rmsF* fB= 1.087}
Fig. 5: Snapshot of two fixed lines (left) and a variable

smooth spectrum with incorporated lines (right). (Green:

linear scale, light blue: log scale)

PRACTICAL APPLICATIONS

The package (more details in [4]) is written in C++ and

kept as self-sufficient as possible. Initialization is done by

a call defining basic parameters such as fClock, the desired

rms output value X0 (valid for arel=1) and the spectral

distribution function (-pointer); this function is valid for

the whole run. Before any output the initial fLow, fUp and

relative amplitude factor arel (if 1) have to be defined.

From then on each call to “NextVNoise()” delivers one

(real) noise data corresponding to the following clock-

tick. As long as fLow, fUp and arel are not changed the

spectrum remains constant; it is up to the user to update

these parameter as function of time (clock-tick k) calling

one of the supplied functions as “SetBandPos(flow,fup)”.

The output has a total rms-value of X0 (for arel=1) as

defined by the user; it is his task to convert (in hardware

or software) the numerical output to the desired e.g. MV

or degree.

Monochromatic lines – if required – have to be

initialized and requested independently; the ‘stable’ line-

frequencies may be updated as desired by similar calls.

Fig. 6: Graphical User Interface screenshot (digital) as

used for the SPS blow-up tests. Top-left: GUI-fields for

input specifications of the spectral shape (as trapezium)

and three linear interpolation points for fLow(t), fUp(t) and

arel(t); bottom-left: [0–1] normalized spectrum, bottom-

right: time-domain output representation. The absolute

noise-amplitude was adjusted with the AWG output level.

CONCLUSION

The package has proven its utility and versatility in

applications in real-time [6][7] and off-line simulations

[5] for CERN’s accelerators and future collider LHC.

ACKNOWLEDGMENT

The author wants to thank T. Bohl, T. Linnecar and E.

Shaposhnikova for helpful discussions and U. Wehrle for

his contributions to the hardware realization and the GUI.

REFERENCES

[1] J. Tückmantel, ‘NoisySync’, a simulation program for

RF noise in synchrotrons, CERN, unpublished

[2] S. Ivanov, O. Lebedev, RUPAC 2002, Russia,

Obninsk, October 2002

[3] Makoto Matsumoto and Takuji Nishimura,

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.

html

[4] J. Tückmantel, CERN-LHC-Project-Report-1055

[5] J. Tückmantel, CERN-LHC-Project-Note-404

[6] CERN-AB-Note-2008-020

[7] G. Papotti et al., this conference TUPP059

Proceedings of EPAC08, Genoa, Italy TUPC103

06 Instrumentation, Controls, Feedback & Operational Aspects T03 Beam Diagnostics and Instrumentation

1301

