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Abstract 
This paper is based on a transcript of my EPAC’08 

presentation on advanced computing tools for accelerator 

physics. Following an introduction I present several 

examples, provide a history of the development of beam 

dynamics capabilities, and conclude with thoughts on the 

future of large scale computing in accelerator physics. 

INTRODUCTION 

To begin I want to take you back 37 years to the 8
th

 

International Conference on High Energy Accelerators, 

held in Geneva in 1971. The opening address by Viktor 

Weisskopf was titled “The Past and Future of High-

Energy Physics.” Weisskopf wrote [1], 

 
“…something new entered the picture–in this period from 
the thirties to the fifties, a new type of physicist appeared. 
No longer do we have only the experimental physicists 
and the theoretical physicists, but we have a new group 
which, for lack of a better word, I shall call the machine 
physicists. Of course we know who is the great, the first 
one who created that job: it was Ernest Lawrence. And 
there were many others. I would not like to leave out 
Stanley Livingston, nor McMillan and Veksler.” 
 
At the end there was a question and answer session and, 
as was customary at the time, it was included in the 
proceedings. In particular there was a comment from Lew 
Kowarski. Kowarski played a key role in the founding of 
CERN, and was named its first Director of Scientific and 
Technical Services in 1954. He created the Data Handling 
Division which he directed until his retirement in 1972. 
He died in 1979. I think his comment after Weisskopf’s 
talk is a fitting opening to this presentation:  
 
“I would like to comment on your three kinds of physicists 
in a perspective somewhat more extended in time. Early 
experimentalists worked with their hands: Galileo’s 
legendary tossing of stones from the Tower of Pisa, or the 
alchemists mixing by hand the ingredients in their mixing 
bowls. In a similar way the theoreticians manipulated 
their numerical quantities and symbols by their unaided 
brain-power. Then came the machines to extend the 
experimenter’s manual skill and to open whole new 
worlds of things to be handled in ways nobody could 
predict or even imagine before they really got going. Now 
we are at the beginning of a new kind of extension by 
machine: the computer comes to supplement the 
theoretician’s brain. We cannot foresee what this fourth 
kind of creativity in physics will bring, but we may expect 
that, just as Ernest Lawrence’s contribution was decisive 
to the development of nuclear machines, the name of John 
von Neumann will be remembered in connection with the 
origins of computational physics.” 

 
Kowarsky’s comments were made in 1971, at a time 
when the fastest computer in the world was generally 
viewed to be the CDC 7600. Codes on the CDC 7600 
could achieve performance of around 10 million floating 
point operations per second, or 10 Mflops. Moving 
forward 37 years to just 2 weeks ago, we see the 
announcement that the petaflops barrier – the quadrillion 
flops barrier – has now been broken, by a computer called 
“Roadrunner” developed by IBM in collaboration with 
the US DOE and Los Alamos. Roadrunner has roughly 
6000 dual-core AMD Opteron chips and 12000 Cell 
GPU’s based on Sony’s Playstation 3. Compared to the 
CDC7600 at the time of Kowarsky, Roadrunner is 100 
million times more powerful than the CDC7600. 

When Kowarsky said, “we cannot foresee what this 

fourth kind of creativity in physics will bring” he 

probably did not imagine that such computational power 

would be available in just 3 decades. 

So, with that as motivation, let me present some 

examples of what is being done now in accelerator 

modelling on current supercomputers. 

 

LARGE-SCALE MODELLING 

Since we are in Italy, I’ll begin with an example related to 

an Italian accelerator project, the Fermi@Elettra project 

to design and construct a 4th generation light source. 

Recently simulations have been performed by Ji Qiang of 

LBNL, using the IMPACT-Z code, with up to 5 billion 

macroparticles. These simulations showed that it takes 

around a billion macroparticles to compute the 

uncorrelated energy spread in such a way that the result 

does not change significantly with macroparticle number. 

While huge numbers of macroparticles are not needed in 

all beam dynamics simulations or to compute all 

quantities (rms envelopes, for example, generally require 

a much smaller number), there are some problems, like 

this one, for which very large scale modelling in essential. 

Parallel beam dynamics codes such as IMPACT-Z, 

IMPACT-T, ELEGANT, OPAL, ORBIT, and 

SYNERGIA, are now able to perform simulations with 

hundreds of millions, and in some cases billions, of 

macroparticles. In many cases this is equivalent to the 

actual number of physical particles. Consider that a 

nanoCoulomb bunch in an electron linac contains about 6 

billion particles. 

There has been remarkable improvement in the 

simulation of beam-beam effects in colliders in the last 

decade. In the 1990’s such simulations were mainly 

weak-strong simulations (i.e. simulations that were not 

fully self-consistent) that used simplified models. 

Compare that with the first million-particle, million-turn 

simulation of beam-beam effects (in the LHC) performed 
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in 2003 using the BEAMBEAM3D code. Parallel codes 

such as BEAMBEAM3D and the NIMZOVICH package 

have been used to study the parameter space of many 

colliders to find improved working points and optimize 

luminosity. Modern beam-beam codes can model head-on 

collisions, crossing-angle collisions, long-range 

collisions, crab-crossing, and multiple bunches in a ring 

interacting at multiple collision points. 

Two more important “firsts” occurred recently using 

parallel beam dynamics codes that illustrate the increasing 

complexity of modern beam dynamics models: in 2005, 

the first parallel simulation of multi-bunch injection from 

a linac to an accumulator was performed using the 

Synergia package, and this year the first parallel beam 

dynamics simulation of neighboring bunch effects in a 

cyclotron was performed using OPAL-CYCL. 

Next consider electromagnetic modelling. In the early 

1990’s simulations usually assumed cyclindrical 

symmetry, had stair-step boundaries, and could compute 

cavity eigenfrequencies to around 0.1% accuracy. Today 

fully 3D electromagnetic simulations can be performed of 

structures with extremely complex geometry, and 

eignmode calculations can achieve accuracies of 10 parts 

per million. In fact, present-day calculations can now be 

performed, with accuracies that are, in many cases, better 

than fabrication tolerance. Some examples of parallel 

electromagnetic modelling codes are OMEGA3P, T3P, 

VORPAL, ACHERON3D, FEMAXX, GdfidL, and 

PBCI. As an example of what is now possible, consider 

that the code OMEGA3P was recently used to compute 

eigenmodes in a 3D model of an 8-cell cryomodule for a 

proposed linear collider; this simulation used 300 GB of 

memory and required 1 hr of CPU time on 1024 

processors on a Cray XT4 at NERSC.  

Parallel codes are also being used for high fidelity 

modelling of laser- and plasma-based accelerators. Some 

examples include OSIRIS, QuickPIC, and VORPAL. 

Recently OSIRIS simulations have been performed using 

a grid of size 4000x256x256 to study laser wakefield 

accelerators (LWFAs). Parallel simulations of laser- and 

plasma-based accelerators are being used to help 

understand the underlying physics of LWFAs in the blow-

out regime, to design 100 GeV LWFA stages, to provide 

feedback to experiments, to design plasma wakefield 

accelerator (PWFA) afterburners, and to design stable, 

low energy spread, staged systems of LWFAs. 

So far I’ve mentioned that parallel codes are being used 

to design and optimize linacs and colliders; to design and 

optimize complex electromagnetic structures; to explore 

the complex physics of advanced accelerator concepts 

based on lasers and plasmas, and to design and optimize 

the next generation of experiments based on these 

concepts. Before closing this section of my talk and want 

to briefly mention some other important applications. 

Parallel codes are being used to explore and understand 

multi-species instabilities, and to develop designs to 

control them. Examples include the simulation of the 

electron-proton instability in the SNS accumulator ring 

using ORBIT, and the simulation of electron-cloud effects 

at LHC using the WARP-POSINST code. Parallel 

simulations using VORPAL are being used to explore the 

phenomenon of electron cooling with emphasis on the 

proposed electron cooling system at RHIC. Parallel 

simulations using IMPACT-Z are being used to explore 

space-charge driven emittance exchange in rings. And the 

WARP code is being used in applications for Heavy Ion 

Fusion and High Energy Density Physics. 

  

HISTORY 

Obviously the remarkable advances that have taken place 

in computational accelerator physics could not have been 

made through advances in computer hardware alone. New 

physical models, computational methods, numerical 

algorithms, and tools for analyzing the huge amounts of 

data now being generated, have been crucial. Next I will 

present some history on the development of tools for 

computational accelerator physics, with a focus on beam 

dynamics. 

This discussion will focus on advances from the 1970’s 

onward, but of course the story of modelling, 

understanding, and predicting particle trajectories goes 

back much, much further than that. Some would say it 

goes all the way back to Maxwell, Lorentz, and Poincare. 

With the steady development of particle accelerators from 

the 1930’s onward, people became very interested in 

understanding the linear and nonlinear properties of 

orbits, and in understanding the stability of orbits. While 

preparing for this presentation I went over many old 

proceedings from accelerator conferences. One person 

who was both incredibly prolific and arguably ahead of 

his time was L. Jackson Laslett, who was first at Ohio and 

then moved to Lawrence Berkeley Lab. In looking 

through old proceedings, Jackson seems to be one of the 

early people to emphasize accelerator computations. 

There is a paper in a 1956 proceedings in which he 

describes particle tracking calculations using the ILLIAC 

computer. 

Arguably the most important of the very early beam 

dynamics codes was the TRANSPORT code developed 

by Karl Brown and his collaborators. Though the roots of 

the code date back to the 1960’s and earlier, the 2
nd

 order 

version was released around 1969.  

In TRANSPORT, the particle motion was represented 

by a 2
nd

 order power series around a reference particle. 

The power series was in 6 variables, namely 3 coordinates 

and 3 momenta. 

But there’s a problem with this power series. If 

truncated, it is not symplectic, that is, it does not have the 

Hamiltonian properties that are characteristic of the true 

dynamical system of a charged particle in electromagnetic 

fields. While some people appreciated very early the 

importance of being symplectic – it’s clear from Jackson 

Laslett’s papers that he did – I think most people did not 

appreciate it until the 80’s. For example, I can remember 

being at Los Alamos and seeing simulations of 

trajectories of particles in the Proton Storage Ring. The 
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simulated particle trajectories were unphysical, they 

spiraled into the origin, and it was due to numerics, not 

physics. 

A sea change occurred in the accelerator community in 

the 1980’s. Though many people played a role, Alex 

Dragt was clearly the pioneering figure in the 

development and establishment of Lie algebraic methods 

in accelerator physics.  Trained as a particle physicist, 

Alex had a strong mathematical background and he had 

been working on these tools in the 1970’s. A famous 

result was published in 1976, that of the Dragt-Finn 

factorization. In that paper, Alex and John Finn showed 

how an origin-preserving symplectic map could be 

uniquely represented as a product of Lie transformations. 

Then, in 1980 Alex spent a sabbatical working in Richard 

Cooper’s accelerator physics group at Los Alamos; while 

there he realized that the tools he had been developing 

were ideally suited to analyzing and predicting beam 

dynamics in accelerators. It turned out that, if one 

expanded Alex’s Lie product as an infinite series, one 

could identify a one-to-one correspondence between the 

tensors in Karl Brown’s Taylor series and the Lie 

algebraic polynomials in Alex’s expression. But the Lie 

product is symplectic even if the product is truncated. 

Furthermore the Lie algebraic approach used the minimal 

number of free parameters required to specify a 

symplectic map to a given order. Alex went on to find 

ways, using generating functions, to evaluate the action of 

Lie transformations without expanding them, thereby 

creating a transformation that had the correct linear and 

nonlinear properties to a specified order, but that was 

symplectic to all orders. 

These tools became the foundation of a new code, the 

Maryland Lie algebraic beam dynamics code, or MaryLie. 

This was initially developed by Alex and has first 

graduate student, David Douglas, around 1980. Along 

with a 3
rd

 order library of beamline elements in Lie 

algebraic form, it contained routines for symbolically 

computing Poisson brackets, for manipulating and 

combining maps, and for performing truncated power 

series algebra. 

The 1980’s also saw the development of the program 

“MAD” (Methodical Accelerator Design) by F. Christof 

Iselin and his collaborators at CERN. The MAD code also 

ushered in the notion of a standard input language for use 

by the accelerator modelling community to describe an 

accelerator lattice. 

I mentioned the code TRANSPORT as being developed 

around 1970, and the Dragt-Finn factorization being 

published in 1976 – an interval of 7 years between them. 

Another key advance came 7 years later again, when, in 

1983, Alex and his graduate student Etienne Forest 

published a paper showing the differential equations 

governing the Lie algebraic polynomials [2]. This opened 

the door to computing transfer maps for non-ideal 

beamline elements such as magnets with fringe fields. My 

initial contribution to accelerator physics came in 1985 

when, as a graduate student in Alex Dragt’s group, I 

implemented these equations in the GENMAP routines of 

MaryLie, and used them to compute transfer maps for 

rare earth cobalt quadrupole magnets and maps for dipole 

magnets with fringe fields. 

Three more key developments occurred in the 1980’s : 

• There was the maturation of normal form techniques, 

developed by Alex Dragt, Etienne Forest, and others. 

Normal form methods represented a powerful means 

of analyzing and designing circular accelerators. The 

original, famous paper of Courant and Snyder, 

published in 1958, demonstrated the concept of 

linear lattice functions in accelerator physics. 

Though people had tried to generalize it to high 

order, with varying degrees of success, the 

development of Lie algebraic-based normal form 

techniques finally solved the problem completely. 

• There was significant progress in the developed of 

symplectic integrators throughout the 1980’s and 

into the 1990’s. Ron Ruth published a paper with a 

3
rd

 order integration algorithm in 1983. Etienne 

Forest and Ron Ruth published a 4
th

 order algorithm 

in 1990. Also in 1990, Yoshida and Suzuki published 

an algorithm for taking a time-reversible symplectic 

algorithm of order 2n and composing it with itself to 

produce an algorithm of order 2n+2. 

• In the late 1980’s Martin Berz introduced differential 

algebraic (DA) tools into accelerator physics. Using 

Martin’s differential algebra package, it became 

possible to compute transfer maps to arbitrarily high 

order. Martin implemented this capability in his code 

COSY-infinity. 

Now let me take a step backward in time and point out 

that, along with the tremendous advances in single 

particle dynamics, during the 1960’s through 1980’s there 

was also a separate activity aimed at modelling beams 

with space charge. In the USA the most widely used of 

these codes were developed at Los Alamos and went by 

the names PARMILA, PARMELA, and PARMTEQ. I 

was also interested in space-charge effects, in fact it was a 

major part of my Ph.D. dissertation. Being from those of 

the “Maryland school” who spent summers at Los 

Alamos, I can remember thinking about how much effort 

the space-charge code developers put into modelling 

space-charge effects, but how they seemed to be not fully 

aware of certain advances in high order optics. I can 

remember them working to put new capabilities into their 

codes, like fringe field effects, and my being surprised 

because the problem had essentially been solved by Alex 

and his colleagues. This problem of combining high order 

optics with space-charge effects in beam dynamics 

simulations would be solved in the 1990’s. 

Another activity that also took place in the 1990’s was 

the beginning of the adoption of parallel computing 

techniques by the accelerator community. I got my start in 

parallel computing on the Connection Machine 5 at the 

Advanced Computing Laboratory at Los Alamos, initially 

developing a 2D space-charge code called IMPACT. This 

led to a DOE Grand Challenge and extension of IMPACT 

to 3D by the mid 1990’s. To the best of my knowledge 

IMPACT was the first, production, parallel beam 
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dynamics code in the accelerator community. Originally 

developed to perform large-scale simulations of space-

charge effects in linacs, it used numerically computed 

transfer maps to describe rf cavities. It also used a (Lie 

algebra inspired) split-operator technique that made it 

possible for the two main bodies of work mentioned 

previously – beam optics and space-charge effects – to be 

combined into a single, coherent capability. This was the 

predecessor of the MaryLie/IMPACT code that combined 

the high-order optics capabilities of MaryLie with the 3D 

space-charge capabilities of IMPACT. 

The Grand Challenge of the 1990’s represented the first 

DOE-sponsored activity for parallel code development for 

accelerator modelling. It was performed in collaboration 

with my colleague Kwok Ko of SLAC along with 

researchers at UCLA and Stanford. This was followed by 

a DOE SciDAC project that was a major, community-

wide effort in the USA. Currently a second SciDAC 

project is underway, the Community Petascale Project for 

Accelerator Science and Simulation (ComPASS), led by 

Panagiotis Spentzouris of Fermilab. 

In this section I have described some of the history of 

the development of beam dynamics codes and 

methodologies. No doubt new approaches will be 

developed that, along with advances in computer 

hardware, will enable continued advances in 

computational accelerator physics. Here I will mention 

just 3 areas of current activity. 

First, in 2007 Jean-Luc Vay of LBNL recognized that 

by a judicious choice of reference frame (i.e. choice of 

Lorentz transformation) certain calculations could be 

performed orders of magnitude more quickly than if 

performed in the beam frame [3]. To date, applications of 

this new approach have led to 1000x speedup in 3D 

calculations of the electron cloud instability, a 45000x 

speedup in a 2D free electron laser test problem, and 2-3 

order of magnitude speedup in some laser-plasma 

acceleration simulations. 

Second, integrated Green functions (IGF’s) have great 

potential for improving the accuracy of electrostatic PIC 

codes that utilize convolution-based Poisson solvers. The 

IGF approach improves the accuracy of the convolution 

integral by using basis functions. It maintains high 

accuracy even when the beam has a large geometrical 

aspect ratio, a situation which is problematic for non-IGF 

convolution approaches. Depending on the choice of basis 

functions the 3D IGF equations may be extremely 

complicated and time consuming to evaluate; however, 

they are also easily amenable to parallel computation. The 

IGF approach is now available in some beam-beam codes 

and in the codes IMPACT-Z, IMPACT-T, and 

MaryLie/IMPACT. 

Lastly, significant progress continues to be made in the 

numerical computation of transfer maps. In particular, 

there is much progress in the computation of maps using 

field data on a surface the surrounds the beam. A number 

of people have been involved in this research area 

including Alex Dragt, Marco Venturini, Chad Mitchell, 

Peter Walstrom, Dan Abell, and others. Techniques have 

been developed in which the cross section of the surface 

may be rectangular, circular, elliptical, and for which the 

3D geometry is straight or toroidal or a combination of 

these stitched together. Ever since the pioneering work of 

Dragt and Forest already mentioned, we have known how 

to calculate transfer maps when the on-axis gradients are 

known. However, it has also been recognized that, to 

compute high order maps, one cannot simply tabulate the 

on-axis lowest-order gradient and numerically 

differentiate the data because of numerical errors 

associated the procedure. Using surface data and 

calculating from the outside inward (i.e. from the surface 

inward to the axis) it is possible to develop a procedure 

for which one can compute numerically stable, accurate 

on-axis gradients to high order. This in turn allows the 

accurate computation of realistic transfer maps including 

nonlinear effects. Given that modern accelerator projects 

typically cost hundreds of millions to billions of dollars, it 

is hard to imagine that a major new accelerator will ever 

be built without first performing detailed beam dynamics 

simulations that include the linear and nonlinear 

properties of realistic beamline elements using transfer 

maps generated from surface data. 

 

THE FUTURE 

To conclude, let me speculate about the future. As I 
mentioned at the start of this talk, the last time I spoke at 
EPAC was in 1998 in Stockholm. At that time the number 
one computer on the top500 list [4] was the Intel ASCI 
Red system at Sandia National Laboratory, with a 
performance of 1.3 Tflops using 9000 processors. Last 
week at the 2008 International Supercomputing 
Conference in Dresden, Germany, the IBM/DOE 
“Roadrunner” system claimed the #1 spot at 1 petaflop. 
Already people are thinking about the future. Soon after 
the Roadrunner announcement of achieving a petaflop, 
headlines appeared [5,6] including “Welcome to the Post-
Petaflop Era,” and “All hail RoadRunner's petaflop record 
– now, what about the exaflop?” 

This brings up the question, how will we, as accelerator 

modelers, use the supercomputers of the future? Since 

clock speeds have levelled off there has been a trend 

toward multi-core architectures. High end computing 

systems now have a larger total number of processors 

than they used to. Many supercomputers now have 10’s 

of thousands of processors, and systems like IBM’s 

BlueGene are already in use that have more than 100 

thousand processors. A computer has already been 

proposed for climate modelling that would utilize 20 

million embedded microprocessors [7]. 

I believe that the accelerator community will use future 

petascale and exascale systems in several ways. First, 

there is a clear need for parameters scans and design 

optimization. I expect that accelerator designers will 

perform studies in which a single accelerator system or 

accelerator component simulation might require a few 

thousand processors to a few 10’s of thousands of 

processors, and we will make simultaneous use of 100’s 
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of thousands or millions of processors by running 

multiple single-point simulations within a single 

executable binary. Second, future peta- and exascale 

systems will open the door to using new algorithms and 

models that are deemed too challenging for terascale 

systems. For example, a 3D direct Vlasov code (i.e. a 

code in which a 6D phase space grid is used) could be run 

on a petascale or exascale system. Consider that a 6D grid 

with a grid size of 128 in each dimension has 4 trillion 

grid points. I would argue that when PIC codes are run 

with around a trillion macroparticles, at that point (and 

probably sooner) 3D Vlasov simulations will begin to 

look attractive. On the topic of new algorithms, I expect 

that we will also see new models and new codes for 

modelling coherent synchrotron radiation in 3D. Lastly, 

given the extreme power of even modest platforms of the 

future – soon it will be possible to purchase a teraflop of 

computing power for around 1000 Euros – I believe that 

there will be new opportunities for using advanced 

simulation models in accelerator control rooms and 

control systems. 

CONCLUSION 

 
Since EPAC’08 is being held in Italy, I started this 
presentation with an example of state-of-the-art modelling 
for an Italian accelerator project (the Fermi@Elettra 
project). To conclude I want to present a quote from an 
Italian scientist, not an accelerator physicist, but a chemist 
named Enrico Clementi. He is quoted as having said [8], 
 
“I know how to get four horses to pull a cart, but I don’t 
know how to make 1024 chickens to it.” 
 
This was in support of a similar comment made by 
Seymore Cray who was not a fan of parallel computing. If 
one looks at the top500 list, one can see that massive 
parallelism now reigns supreme. But one cannot discount 
the comments of Clementi and Cray. It has been difficult 
to achieve high sustained performance on parallel 
computers, and it continues to be so. If one considers a 
machine like Roadrunner, the animal analogy is even 
more daunting: 6000 chickens (dual-core Opterons) are 
running the show, and 12000 horses (the PowerXCell 8i 
processors) are doing the heavy lifting!  
 
Despite the challenges of extreme parallelism, I am 
optimistic. One simply has to look back a few years to see 
how far we have come and one cannot help but be excited 
about where we will be in a few year’s time. When I 
spoke at the US Particle Accelerator Conference in 2001 I 
showed a photograph of the IBM Power3 system that was 
being installed at NERSC; the initial system had a peak 
performance of 3.4 teraflops and filled an entire room. By 
comparison, later this year it will be possible to buy a 
GPU-based floating point unit that fits in a person’s hand, 
slides into a PC slot on a personal computer, and has a 
performance of a teraflop! 
 

I already mentioned that when I spoke at my first EPAC 
in Stockholm in 1998 the fastest computer in the world 
achieved about a teraflop. Today, it is a petaflop. If this 
trend continues, and if people enjoyed this talk enough to 
invite me back in 10 years, I will be able to report that the 
exaflop barrier has been broken, and furthermore I’ll be 
able to report on the many new things that computational 
accelerator physicists will have done on petaflop systems, 
which by that time will be ubiquitous. And if the trend 
continues, young people in this audience will see zettaflop 
and yottaflop computers in their lifetimes. 
 
To quote Kowarski’s words, “We cannot foresee what this 
… kind of creativity in physics will bring,” but it is certain 
to be exciting. 
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