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Abstract 
For NSLSII closed orbit feedback system, in order to 

limit the noise caused by digital step changes of the 
power supplies in the feedback system, the angular kick 
corresponding to the last bit of the power supplies for the 
fast correctors must be smaller than 3 nrad [1]. On the 
other hand, to carry out closed orbit alignment or orbit 
correction after a long term drift, we need strong 
correctors with 0.8 mrad  kick strength [1]. In order to 
avoid the requirement of correctors with both large 
strength and very small minimum step size, we consider 
separate sets of slow correctors with large strength and  
fast correctors with smaller maximum strength.  In order 
to avoid fast and slow feedback systems working in 
parallel, and avoid the possible interaction between two 
feedback systems, we consider the possibility of using 
only one fast feedback system with slow correctors 
periodically removing the DC components of the fast 
correctors so that the DC components in fast feedback 
system do not accumulate to reach saturation even after a 
large long term drift of the closed orbit motion. We report 
on simulation of the performance of such a combined 
system for NSLSII in this paper. 

SYSTEM TRANSFER FUNCTION AND DC 
PERFORMANCE 

In fig.1 we give the lattice positions of fast correctors 
and BPMs in the closed orbit feedback system and the 
slow correctors. In Fig. 2 we give schematics of the fast 
feedback system with slow correctors. R is the response 
matrix of the ring to fast correctors, RB is the BPM part of 
R, Rs is the ring’s response to slow correctors.  

By singular value decomposition [2], RB= VUW ~
. 

The frequency transfer function of BPMs, fast correctors, 
the PID feedback circuit, and slow correctors are denoted 
by FB, FV, -FP, and Fs, respectively, while the slow 
corrector strength (angular kick) is ts. When the feedback 
loop is open, the BPM signals are given by: 

BnoiseerrBerrBerrBQB yyRQyRy +−+= θθ0  . 

 
Where yerr is the quads center motion, yerrB is the BPM 
motion, yBnoise is the BPM electronic noise, θ err represent  
angular kicks from stray field errors, while RBQ and 

θBR are the response matrices between BPM and quads 
and stray field errors sources, and Q is the quads KL 
value. From fig. 2 we see that when the feedback loop is  
closed, we have the BPMs signal: 

0
1 )~( BSSBSBBPVBB ytFRyFUWVFFRy ++−= − , 

where RBS is the response matrix between BPMs and 
slow correctors. Now we assume FB, FV, -FP are the same 
for all channels, so they are just numbers, not matrices, 
and can be factored out and written as F= FB  FV FP.  
 
Using [2], with ,1~~ == UUVV  and  

UUUVWVUWUVWRB
~~~~ 11 == −− , we get 

0)~1( BSSBSB ytFRyUFU +=+ .  Since ≠UU ~
1 is a 

non-diagonal matrix not diagonal, instead of solving for 
yB we solve for the feedback signal f BB yFUW ~1−≡ , 

with the result SSBSB tFRFUWffF ~)1( 1
0

−+=+ , 
where f0 is the feedback signal when the feedback loop is 
open. Thus when the feedback loop is closed and the slow 
correctors are off, we have f=f0/(1+F), while the fast 
corrector strength is t=-VFP f0/(1+F). After averaging 
over long time the DC components of t are used as the set 
points of slow correctors: ts=-V f0G/(1+G), where G 
=F(0) is the DC value of F. With a simple derivation we 
have the fast corrector strength when the slow correctors 
are on: 
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Figure 1: Layout of  the orbit feedback system. 
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Figure 2: The fast feedback system with slow correctors. 
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For DC, FB, FV =1, and FP=G>>1, and (1-G/(1+G)) 
approaches 0 for large G, so the first term in the 
parenthesis is small. For the second term in the 
parenthesis, when the slow correctors are close to the 
corresponding fast correctors, RBS is nearly equal to RB, 
hence it is also very small. As result the fast correctors 
strength are largely reduced when the slow correctors are 
on. With these set points, after simple derivation, we 
get
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This is the residual orbit. The second terms in the two 
parentheses are the time dependent response of the fast                   
feedback system to the noise and random motion of 
magnets and the response to the turning on of the slow 
correctors when their set points are sent in respectively. 
When we replace F by G in this expression we obtain the 
DC components of the residual orbit: 
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In the lower part of Fig.3 we plot the DC horizontal 
residual orbit. Here we assume the floor of the storage 
ring has a random long term drift with RMS value of 
2 μ m, and there is a random floor vibration of 0.2 μ m 
around the storage and BPM noise of 0.2 μ m and the plot 
is the RMS values obtained with 400 random samples. 
The red line is the residual orbit when fast feedback is on 

but with fast correctors only, while the green line is with 
both fast and slow correctors on. The Blue dots are the 
strengths of the slow correctors while the green ones are 
for the fast correctors when both fast and slow correctors 
are on.  If the slow correctors are turned off, then the fast 
corrector strengths would be represented by the blue dots. 
It is clear that the fast corrector strength is largely reduced 
when the slow correctors take on the set points of the fast 
correctors and the residual orbit is also slightly improved. 
If there is no further long term drift in the floor, and the 
set points of the fast correctors, after averaging over long 
time, are shifted to the slow correctors again, the residual 
strengths of the fast correctors would be further reduced. 
The residual strength of the fast feedback is not zero 
because of the 0.2 μ m floor vibration and BPM noise. 
The result for vertical orbit is similar. The temporal 
response of the fast feedback system is determined by the 
factor F/(1+F)= FB  FV FP /(1+ FB  FV FP ), while the 
response to the impulse of the slow correctors is 
determined by FSF/(1+F). We have FB = Bα /(s + Bα ),FS 

= sα /(s + sα ), FV= V
se ατ− /(s + Vα )respectively, with 

poles at Bα = kHz22 ⋅π , 

Vα = kHz5.12 ⋅π , sα = Hz32 ⋅π , the delay in the 
power supplies including the effect of vacuum chamber 
next to the fast correctors is =0.2ms, and a  trial 
feedback PID transfer function with pole position of at 

pα = Hz22 ×π  and gain G=100: FP =G pα /(s + pα ), 
where s is the Laplace transform variable of time t. 

STEP FUNCTION RESPONSE 
 To obtain the response of the fast feedback system to a 
step function change of error field, we need to calculate  
the Laplace transform of 
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When delay is =0, the denominator is a third order 
polynomial, hence the three poles of the transfer function 
are easily obtained from the cubic equation    
                     

 
( )( )( ) VPBVPB Gsss αααααα ++++ =0. With the 

three poles known, the inverse Laplace transform is easily 
calculated using Mellin’s inverse integral by loop integral            
around the three poles, which is simply the residue of the 
poles. However, we realized that when ≠τ 0, there are 
infinite number of poles. To show this we plot the zeros 
of the real part and the imaginary part of the denominator 
on the complex plane of variable s in Fig. 4. The crossing 

 
Figure 4: There are three 
poles on the complex 
plane of s, when τ =0. 

Figure 5: There are 
infinite number of poles 
on the complex plane of 
s, when τ =0.12ms 

 
Figure 3: DC components of the residual orbit. 

 
Figure 6: Equivalent circuit  for  response function. 
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points of the zero line of the real part and imaginary part 
of the denominator D are the poles. There are 3 poles 
whenτ =0. However there infinite number of poles when 
τ =0.12ms, as shown in Fig.5. In addition to this 
difficulty, our attempts to sum over the residue of these 
poles failed because the sum is found to be divergent. 
Hence we need a different method than Mellin’s inverse 
integral. For this we write the response function as: 

)1/(
1 003 gegeuu

F
Fy stst −− +=
+

≡   ,  

where u is the Laplace transform of step function 
representing  the sudden turn on of a DC noise source, 
while 0g the transfer function F whenτ =0, which is 
easily obtained by residue of the Mellin’s integral with 
three poles PVB ααα ,, . 

The equivalent circuit diagram for y3 is given in Fig. 6. 
It is clear from this we have 102 ygy = , 23 yey sτ−= , 

and  31 yuy −=  . So we have  

 
ττ ss eygueyuyuy −− −=−=−= 10231  . 

This leads to )1/( 01
τseguy −+= . And hence 

indeed we have )1/( 003
ττ ss eguegy −− +=  , as we 

expected. To obtain the Laplace transform of y3, we write 
the Laplace transform of the 3 equations based Fig.6: 

')'()'()( 10 02 dttyttgty
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)()( 23 τ−= tyty and )()()( 31 tytuty −= .  These 
leads to integral equation 
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equation can easily be solved numerically by iteration: 
from time 0 to τ , y3=0, so y1(t)=u(t)=1, thus the integral 
in right can be calculated with t from τ  to time 2τ . 

In turn, the result can be used the same way to 
calculated till t=3τ . Continue this way, clearly we can 
calculate y1(t) to any time t. Then, y3 is obtained by y3(t) 
= 1- y1(t). The step function response f(t) ≡ y3(t) for 
τ =0.2ms, with pα =3Hz, 2.5Hz, and 1.7Hz is plotted in 

Fig. 7 showing when pα =1.7Hz, the system reaches its 

DC level in shortest time (2ms). When pα =3Hz there is 
an overshoot of nearly 20% and it takes 3ms to reach final 
value.  

STEP FUNCTION RESPONSE OF FAST 
FEEDBACK SYSTEM COMBINED WITH 

SLOW CORRECTORS 
 
With the Laplace transform of F/(1+F) obtained, we 

can combine this result with the performance of the 
system derived in page 2 for the residual orbit expressed 
by y to obtain its temporal behavior when the slow 
correctors are turned on for any specific random error of 
orbit drift. In Fig. 8 we plot the temporal response to the 
turn on of the slow correctors after there is a 2 m long  
term drift, random vibration and BPM noise are not 
included in this plot. At the center of the long straight 
section we can see the orbit position overshoots then 
return to its final value after about 10ms.  

 
Notice that in this example we turn on the slow correctors 
to the set points of those fast correctors next to them 
without sending signals to the fast correctors at the same 
time. Clearly if we also send opposite signals to the fast 
correctors synchronously to remove the DC set points of 
the fast correctors, the temporal change of the orbit will 
be reduced nearly half to about 2 μ m from about 4 μ m. 
To eliminate this sudden change of orbit clearly we need 
to shift the set points of fast correctors to slow ones 
before the floor drift to far less than 0.2 μ m, the 
tolerance on the floor motion. Since our estimate based on 
the ATL law is that the floor motion around the ring 
within a day is about 4 μ m, we infer from ATL law that 
if the change of settings in the slow correctors is much 
more frequent than 3 minutes, the transient caused by this 
change will be much less than 0.2 μ m, and hence is 
negligible. We remark that the simulation in figure 3 is 
carried out assuming random floor motion, if we simulate 
the floor motion according to ATL law, the feedback 
system would be much more efficient in suppression of 
the orbit motion because the floor motion within short 
distance is correlated. In addition, the relevant length in 
applying ATL law is more close to beam line length than 
the whole ring. Hence our estimate is a conservative one. 
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Figure 7: Step function response of fast feedback 
system. 

Figure 8: Temporal response to turn on of slow 
correctors at first long and short straight sections in one 
specific random example.  
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