
COLLISIONLESS RELAXATION IN THE TRANSPORT     OFOF
OF SPACE CHARGE DOMINATED BEAMS

∗

Yan Levin, Renato Pakter† , Tarcisio N. Teles
Insituto de Fı́sica, Universidade Federal do Rio Grande do Sul, Brazil

Abstract

In this paper, a theory is presented which allows to quan-
titatively predict the final stationary state achieved by a
transported space-charge dominated beam during a process
of collisionless relaxation. It is shown that a fully matched
beam relaxes to a Fermi-Dirac distribution. However, when
a mismatch is present and the beam oscillates, halo for-
mation leads to a phase separation. The theory developed
allows to quantitatively predict both the density and the ve-
locity distributions in the final stationary state, including
the halo.

INTRODUCTION

Relaxation to a final stationary state of particles inter-
acting through long-range forces, such as the eletromag-
netic interaction among particles in an intese beam, is in-
trinsically different than that of systems with short-range
interactions, such as neutral gases and quasi-neutral plas-
mas, where the Coulomb interaction is screened. In the
latter case, the interparticle collisions drive the system to
an equilibrium state described by the Maxwell-Boltzmann
distribution. This distribution is unique, in the sense that it
is completely determined by the globally conserved quan-
tities such as the total energy, momentum, angular mo-
mentum, etc. — and is otherwise independent of spe-
cific initial conditions. Relaxation of particles interacting
by long-range potentials, on the other hand, is very dif-
ferent. For these systems, the collision duration time di-
verges and the state of thermodynamic equilibrium is never
reached. Instead, the dynamics evolves to a stationary
state in which distribution functions appear to stop vary-
ing with time. Unlike thermodynamic equilibrium, in such
stationary state, however, detailed balance is violated and
neither equilibrium thermodynamics nor equilibrium sta-
tistical mechanics can be used. Here, we investigate the
relaxation of space-charge dominated beams transported
through a uniform focusing field.

MODEL

We consider the transport of intense, continuous,
charged-particles beams through a uniform focusing mag-
netic field. The beam is assumed to propagate with a
constant axial velocity vz êz , so that the axial coordinate

∗Work supported by CNPq and FAPERGS, Brazil, and by the US
AFOSR, grant n. FA9550-06-1-0345.

† pakter@if.ufrgs.br.

s = z = vzt plays the role of time and to be symmetric
with respect to the z − axis. The external focusing field
is given by B = Boêz and is used to compensate the re-
pulsive Coulomb force between the beam particles. It is
convenient to work in the Larmor frame of reference [1],
which rotates with respect to the laboratory frame with an-
gular velocity ΩL = qBo/2γbmc, where c is the speed
of light in vacuo, and q, m, and γb = [1 − (vz/c)2]−1/2

are the charge, mass, and relativistic factor of the beam
particles, respectively. In this frame, the beam distribu-
tion function fb(s, r,v) evolves according to the Vlasov-
Poisson system [1]

∂fb

∂s
+ v · ∇fb + (−κzr−∇ψ) · ∇vfb = 0, (1)

∇2ψ = −(2πK/Nb) nb(r, s), (2)

where Nb is the number of particles per unit axial
length, r is the position vector in the transverse plane,
and v ≡ dr/ds is the transverse velocity, nb(r, s) =
Nb

∫
fb d2v is the transverse beam density profile, κz =

q2B2
o/4γ2

b v2
zm2c2 is the focusing field parameter, and K =

2q2Nb/γ3
b v2

zmc2 is the beam perveance, which is a mea-
sure of the beam intensity. In Eqs. (1) and (2), ψ is a
scalar potential that incorporates both self-electric and self-
magnetic fields, Es and Bs. We shall take zero of the scalar
potential to be at rw, the position of the conducting chan-
nel wall. The distribution function is normalized, so that∫

fb d2rd2v = 1. We assume that the initial beam distri-
bution corresponds to an uncorrelated uniform distribution
in both space and velocity,

fb0(r,v) = η1Θ(rm − r)Θ(vm − v) (3)

with η1 = 1/π2ε0, where ε0 = r2
mv2

m is the initial unnor-
malized emittance of the beam and Theta is the Heaviside
step funcion. The distribution function Eq. (3) is not an
stationary solution of the Vlasov-Poisson system, and for
s > 0 the system will start to evolve. Our aim is to deter-
mine the final stationary state attained by the beam.

In order to verify the theoretical findings to be discussed,
we also perform self-consistent particle simulations. In the
simulations, N = 5000 macroparticles are launched ac-
cording to the prescribed initial distribution and evolve by
interacting with the other beam macroparticles and with the
focusing magnetic the field. Taking advantage of the ax-
isymmetry of the beam, we can easily compute the beam
force on a given particle using Gauss law. The dynamics of
the ith macroparticle is dictated by

d2ri

ds2
+ κzri −

Ni

N

K

ri
− P 2

θi

r2
i

= 0, (4)
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where Ni =
∑

j �=i Θ(ri − rj) is the number of macorpar-
ticles with radius smaller that ri, and Pθi =const. is the
conserved particle angular momentum.

THEORY OF VIOLENT RELAXATION

Vlasov equation (1) shows that the distribution func-
tion evolves in time as an incompressible fluid. While the
fine-grained distribution function fb(s, r,v) never reaches
a stationary state – the evolution continues on smaller and
smaller length scales ad infinitum – Lynden-Bell [2] argued
that the coarse-grained distribution function f̄b(s, r,v, ),
averaged on microscopic length scales, will rapidly relax
to a meta-equilibrium with f̄b(r,v). For gravitational sys-
tems Lynden-Bell called this process “a violent relaxation”.
To obtain the stationary distribution f̄b(r,v), we divide the
phase space into macrocells of volume ddrddv, which are
in turn subdivided into ν microcells, each of volume h d.
As a consequence of incompressibility, each microcell can
contain at most one discretized level ηj . The number den-
sity of the level j inside a macrocell at (r,v) — number
of microcells occupied by the level j divided by ν — will
be denoted by ρj(r,v). Note that by construction, the total
number density of all levels in a macrocell is restricted to
be

∑
j ρj(r,v) ≤ 1.

Using a standard combinatorial procedure [2] it is then
possible to associate a coarse-grained entropy with the dis-
tribution of {ρj}. Lynden-Bell argued that collisionless
relaxation should lead to the density distribution of lev-
els which is the most likely, i.e. the one that maximizes
the coarse-grained entropy, consistent with the conserva-
tion of all the dynamical invariants — energy, momen-
tum, angular momentum and the hypervolumes γ(η j). In
terms of the number densities {ρj} which maximize the
coarse-grained entropy, the stationary distribution function
becomes a Fermi-Dirac distribution,

f̄b(r,v) = η1ρ(r,v) =
η1

eβ[ε(r,v)−μ] + 1
, (5)

where ε is the mean energy of particles with velocity v at
position r, and β and μ are the two Lagrange multipliers
required by the conservations of energy and number of par-
ticles,

∫
ddrddv ε(r,v)f̄b(r,v) = ε0 (6)

∫
ddrddvf̄b(r,v) = 1 .

In the above formula ε0 is the energy per particle speci-
fied by the original distribution fb0. For an azimuthally
symmetric system, the mean particle energy ε is a function
of only the modulus r and v. By analogy with the usual
Fermi-Dirac statistics, we define β = 1/kBT , were T is
the effective temperature of the stationary state (not to be
confused with the usual definition of temperature in terms
of the average kinetic energy which is valid only for clas-
sical systems in thermodynamic equilibrium) and μ is the

effective beam chemical potential. The maximum entropy
state, however, can only be achieved if there is a sufficient
ergodicity (mixing) in the phase space.

RMS MATCHED BEAMS

It is possible to adjust the values of rm and vm in such
a way that during the evolution, the beam envelope (rms
beam size) oscillates as little as possible. This corresponds
to the so called matched beam condition — the beam re-
laxes to equilibrium, but without undergoing significant
macroscopic oscillations. The matching condition can be
determined using beam envelope equation [1]. For the dis-
tribution function (3), it is possible to show that a beam is
matched if

v2
m ≈ κzr

2
m −K. (7)

When this condition is met, we expect the mixing to be
efficient and Lynden-Bell theory to apply. The coarse-
grained beam distribution should then relax to Eq. (5), with
ε(r, v) = v2/2+U(r)+ψ(r), where the mean electrostatic
potential ψ(r) is determined self-consistently by an itera-
tive solution of Eq.(2), subject to constraints of Eqs. (6)
with energy per particle given by

ε0 =
v2

m

4
+

κzr
2
m

4
+

1
8
− K

2
ln

(
rm

rw

)
. (8)

To compare the theory with the simulations, we calculate
the number particles inside shells located between r and
r + dr, N(r)dr = 2πNbrdr

∫
d2vf̄(r,v); and the num-

ber of particles with velocities between v and v + dv,
N(v)dv = 2πNbvdv

∫
d2rf̄(r,v). In Fig. 1 the solid

lines show the values of N(r)/Nb and N(v)/Nb obtained
using the theory described above, while points are the result
of a self-consistent N-particle dynamics simulation. In all
the figures distances are measured in units of

√
K/κz and

velocities in units of
√

K . Good agreement between the
theory and the simulation is found for both position and ve-
locity distributions without any fitting parameters. We have
checked that agreement persists for other values of rm and
vm, as long as the matching condition (7) is satisfied.

MISMATCHED BEAMS

Macroscopic beam oscillations lead to a number of im-
portant consequences which are not taken into account in
the theory of violent relaxation. In particular, the oscil-
lations excite parametric resonances [3] transferring large
amounts of energy to some particles at the expense of the
rest [4]. This mechanism leads to inefficient phase space
mixing and non-ergodicity. As the relaxation proceeds, the
oscillating beam core becomes progressively colder, while
a halo of highly energetic particles is created – a sort of
evaporative cooling process. However, because of the in-
compressibility restriction imposed by the Vlasov dynam-
ics, the core can not freeze – collapse to the minimum of
the potential energy. Instead, the distribution function of
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Figure 1: Position and velocity distributions for a matched
beam with rm = 1.48

√
K/κz and vm = 1.1

√
K . Solid

line is the theoretical prediction obtained using distribution
function of Eq. (5), while points are the result of the dy-
namics simulation with N = 5000 particles.

the core particles progressively approaches that of a fully
degenerate Fermi gas.

The extent of the halo is determined by the location of
the parametric resonance, and its range rR can be calcu-
lated either using the canonical perturbation theory [3] or
test particle analysis [4, 5]. The first resonant particles
move in an almost simple harmonic motion with energy
εR = K ln(rw/rR) + κzr

2
R/2. As more and more parti-

cles are ejected from the beam core their motion, however,
becomes chaotic and a halo distribution becomes smeared
out. We find that the distribution function of a completely
relaxed halo is very well approximated by the Heaviside
step function Θ(εR − ε).

For an out of (thermodynamic) equilibrium system, there
are no clear parameters which will control the core-halo
coexistence. We can not, therefore, a priory say when
the halo formation will stop and a stationary state be es-
tablished. Empirically, however, we have observed that
this happens when the core temperature becomes suffi-
ciently low. In all cases studied, we find that the core-
halo equilibrium is achieved when the ratio between the
core temperature and the corresponding Fermi temperature
is T/TF ≈ 1/40 – i.e. when βμ ≈ 40. The stationary
distribution function for the core-halo system, then, takes a
very simple form [6]

f̄b(r,v) =
η1

eβε(r,v)−40 + 1
+ χΘ(εR − ε) . (9)

Since all the dependence on r and v enters only implic-
itly through ε, fb automatically satisfies the Vlasov-Poisson
system. The value of η1 = 1/π2ε0, is determined by
the initial distribution fb0, while the value of εR is calcu-
lated from the location of the parametric resonance. This
leaves to determine self-consistently, using Eqs. (6) and (2),
the mean electrostatic potential ψ(r), the inverse tempera-
ture β, and the amplitude χ which will determine the frac-
tion of particles inside the halo. These can, once again,
be obtained iteratively. In Fig. 2 we plot N(r)/Nb and
N(v)/Nb, obtained using the theory presented above for
a mismatched beam case, and compare these distributions
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Figure 2: (a) Position and (b) velocity distributions. Points
are the result of dynamics simulations. Solid curves are
the theoretical predictions obtained using the distribution
function of Eq. (9). Dashed curves are the predictions of
the violent relaxation theory based on Eq. (5). The initial
distribution is uniform with rm = 1.0

√
K/κz and vm =

2.4
√

K.

with the ones obtained using the dynamics simulations.
Good agreement is found. For comparison, we also present
in Fig. 2 the distribution functions obtained using the vi-
olent relaxation theory, Eq. (5). It is clear that this the-
ory is unable to describe relaxation of initially mismatched
beams.

CONCLUSIONS

We have studied the relaxation process for space-charge
domintaded beams transported along a focusing magnetic
field. Unlike normal gases with short range forces, space-
charge dominated beams do not evolve to the state of ther-
modynamic equilibrium. Instead collisionless relaxation
culminates in a stationary state in which the detailed bal-
ance is violated. Using a combination of non-equilibrium
statistical mechanics and the theory of parametric reso-
nances it is, nevertheless, possible to a priory predict the
distribution functions for the final stationary state. Unlike
the normal thermodynamic equilibrium, this state, how-
ever, explicitly depends on the initial distribution of particle
velocities and positions.
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