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Abstract 
This work discusses a method of characterizing the 

beam particles with just some assumptions about the 
entire beam phase-space topology. At equilibrium, the 
beam phase-space can be recognized as composed by 
almost two distinct regions: a thin horizontal branch over 
the ݎ axis that is populated by the core particles and a 
curve branch in the ݀ݎ ݔ ݏ݀/ݎ plane, which is populated 
by the halo particles. Since these regions have a regular 
shape, then it is readily possible to convert them to an 
analytical expression. Two distinct shapes have been 
employed (circular and elliptical) to model the beam halo 
branch. With this, all usual initial beam mismatch values 
are covered with accuracy to determine the beam 
envelope and emittance at equilibrium. Full self-
consistent ܰ-particle beam simulations have been carried 
out and its results compared with the ones obtained with 
the model. Results agreed nice for all analyzed mismatch 
cases. 

I TRODUCTIO  
Beams composed by charged particles usually direct 

itself to its final stationary state with the decay of its 
envelope during its evolution inside a magnetic 
confinement channel [1]. This is the case with interest 
here: initially cold, mismatched and homogeneous beams, 
under the thin beam approximation evolving aligned to 
the symmetry axis of a linear channel, focused by a 
constant magnetic field generated by solenoids. The 
decay of the beam envelope is followed by the increasing 
of another beam statistical quantity known as emittance 
[2]. It is interesting to note that the decreasing of the first 
commented quantity is dynamically synchronized with 
the growth of the second, being the entire energy of the 
beam the constraint of the motion. For this reason, 
emittance has been many times taken as a satisfactory 
indicator of the beam envelope decay, which posterior is 
directly associated with halo formation. The dynamical 
dependence of these quantities is presented in Figure 1 for 
a beam with an initial mismatch ݎ௢ of 50%. A rescale 
process has been done over the equations so that the 
equilibrium envelope for this beam is ݎ௘௤ = 1.0. In this 
way, the mismatch assumes ݎ௢ = 1.5. These results have 
been obtained through self-consistent ܰ-particle 
numerical simulations, based on Gauss’ Law [3]. 

The dynamical behavior of the above quantities is 
qualitatively distinct during the beam evolution in the 
magnetic focusing channel. For a time ݏ ≤ ߬, the beam 

envelope ݎ௕ oscillates with almost fixed amplitude and the 
increasing of the emittance ߳ is unworthy. However, as 
the time ݏ approaches the characteristic time scale ߬, ݏ ≈ ߬, not only the envelope ݎ௕ but also the emittance ߳ 
observes abruptly a change in its values. Specifically, ݎ௕ 
suffers an abrupt decay while emittance ߳ suffers a sharp 
growth. After this time scale, to say ݏ > ߬, as the 
envelope ݎ௕ as the emittance ߳ stabilizes again, remaining 
in this situation indeterminately. From this behavior, 
remarked both in full self-consistent ܰ-particle 
simulations and experiments, it is possible to classify in a 
dichotomic way the states assumed by the beam: an initial 
nonstationary state in which beam statistically-averaged 
quantities remain almost constant for a time, valid for ݏ ≤ ߬, and a final stationary, in which beam statistically-
averaged quantities assume new values, different from 
those at the initial state, and that remain in this situation 
for times ݏ > ߬. These states are mediate by a transition at ݏ ≈ ߬. The quantity ߬ accounts the time scale of the beam 
envelope decay, which necessarily is a function of the 
initial characteristic of the beam distribution. This 
quantity is detached in red in the Figure 1, being its value ߬(ݎ௢ = 1.5) ≅ 404. 

 
Figure 1: Envelope decay and emittance growth during 
the beam dynamics with an initial mismatch of 50%. 

The considerations done in the last paragraph are based 
in a macroscopic observation of the beam, obtained from 
the analysis of statistically-averaged quantities of the 
beam like the envelope and the emittance. However, the 
physical mechanism behind this phenomenon is related to 
the resonant interaction of individual particles with the 
overall beam. It is the microscopic nature of the system 
influencing its macroscopic behavior. During the beam 
dynamics, Gluckstern has shown [4] that the initial beam 
envelope mismatch induces the development of large 
resonant islands [5] beyond its border. Particles 
individually extract considerable amount of energy from 
the oscillatory motion of the beam, increasing its kinetic 
energy, and, as a consequence, generating the diffusion of 
its orbits in the phase-space. The kinetic energy of these 
particles has an important contribution to the emittance 
computation, representing the essence of its growth. Due 
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to energy conservation, in this circumstance, the beam 
envelope must decay. It is important to note that if these 
particles have high kinetic energy at some instant of time, 
in another moment of its dynamics this will imply in high 
spatial amplitude orbits. From the beam configuration 
space, this particle dispersion means halo formation, 
being its implication over engineering aspects of 
accelerators well-known and extensively explored in the 
literature. 

THE DEVELOPED MODEL 
The microscopic mechanism previously described, in 

the beam phase-space it is translated as the population of 
a new region. As individual particles progressively couple 
with the beam, their kinetic energy increases so that they 
are able to migrate from the original horizontal branch to 
a new curve branch in the phase-space. Some particles 
that are initially restrict to lie over the spatial coordinate 
axis ݎ, after the coupling need to be described with the aid 
of the velocity coordinate axis ݀ݏ݀/ݎ. The beam cannot 
anymore be treated as a fluid, but a kinetic approach has 
to be employed. This heating mechanism is observed as a 
diffusion of particles orbits in the beam phase-space, 
being these ones indentified as halo particles. The curve 
branch population by the particles under resonant 
interaction with the beam is show in Figure 2, in which 
many snapshots of the beam phase-space are captured 
during its dynamics. The moment in which these portraits 
are taken appears in green in Figure 1. 

At equilibrium, ݏ > ߬, this flux of particles from the 
thin horizontal branch to the curve branch ceases. That is, 
the amount of particles ௛ܰ residing in the curve branch 
becomes constant. This not implies that once particles 
populate the curve branch they are restricted just to be at 
this region. In fact, the hot particles continue explore the 
whole phase-space. However, for every time after the 
envelope decay, the amount of particles in each region 
remains almost constant. 

It has been found by us that this complex characteristic 
of the beam dynamics can be represented by just a 
quantity named as the fraction of beam halo particles ݂. 
This is valid not just for the equilibrium [6] but also for 
any time of the beam dynamics [3]. The fraction ݂, a 
scalar quantity, represents in a compact manner and in a 
so realistic way this behavior, for every time instant of the 
beam evolution inside the focusing channel. 

Initially, the beam nonstationary state can be modeled 
as a homogeneous beam. Azimuthal symmetry has been 
imposed for simplicity. Thus, the initial beam density can 
be expressed with a step-function ݊(ݎ, ݏ = 0) = ൜ܰ/ݎߨ௢ଶ, for 0 ≤ ݎ ≤ ,௕ 0ݎ for ݎ௕ < ݎ ≤ ௪ݎ , (1)

in which ݎ௪ locates the position of the conduct pipe. At 
equilibrium, the particle density of the beam can be 
decomposed in [6] ݊(ݎ, ݏ ≥ ߬) = ቐ݊௖(ݎ) + ݊௛(ݎ),  for  0 ≤ ݎ ≤ ௖ݎ  for  ,(ݎ)௖݊௛ݎ < ݎ ≤ ௛ݎ  ௛0,  forݎ < ݎ ≤ ௪, (2)ݎ

where ݊௖ and ݊௛ are respectively the particle density for 
the core and the halo, ݎ௖ is the core size and ݎ௜ᇱ(ݎ ≡ (௛ݎ =0 defines the halo size. 

 
Figure 2: Snapshots of the beam transverse phase-space 
during its dynamics inside the channel for an initial beam 
mismatch of ݎ௢ = 1.5. Snapshots captured at (a) ݏ = 0, 
(b) ݏ = 305.3, (c) ݏ = 435.2, and (d) ݏ = 630.1. 

The thin horizontal branch at equilibrium can be still 
represented as step-function profile ݊௖(ݎ, ݏ ≥ ߬) = (1 − ௖ଶ, (3)ݎߨ/ܰ(݂
now with ݎ௖ < ݂ ௢ and expressed by fractionݎ ≡ ௛ܰ/ܰ 
through the relation ܰ = ௖ܰ + ௛ܰ. 

The curve branch, which is delimited by the functions ݎ௜ᇱ(ݎ) and ݎ௙ᇱ(ݎ) in Figure 2, can be readily converted to 
an analytical expression. Following a semicircular 
approximation [6], one is able to obtain ݊௛௖ ,ݎ) ݏ ≥ ߬) = ௛ଶݎඥݎଶߨ݂ܰ − ଶ, (4)ݎ

while through the semi-elliptical approximation [7] ݊௛௘ ,ݎ) ݏ ≥ ߬) = ௛ݎ)2݂ܰ + (௛ᇱݎ ௛ݎ ⋅ 1 + ௛ݎ/௛ᇱݎ)௛ଶݎ/ଶݎ − ௛ଶݎඥݎଶߨ(1 − ଶݎ , (5)

in which ݎ௜ᇱ(ݎ = 0) ≡ ௛ᇱݎ . For ݎ௛ᇱ →  ௛, equation (4) isݎ
recovered. 
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With equations (3), (4), and (5), equation (2) becomes 
completely defined. Thus, one is able to evaluate the 
overall beam energy both at ݏ = 0 and at ݏ ≥ ߬ with the 
aid of [6] ݎ௕ଶ(ݏ)2 − 14 + ℰ(ݏ) = ܧ = (6) ,ݐ݊ܽݐݏ݊݋ܿ

in which ℰ is the average self-field beam energy [8] ℰ(ݏ) = ܭߨ14 න|۳|ଶ݀(7) ,ܚ

obtained from solving the following Maxwell equation [8] 
for the electric field ۳ ∇ ∙ ۳ = − ܭܰߨ2 ,ܚ)݊  .is the beam perveance ܭ(8) .(ݏ

Solving the Maxwell equation (8) for each beam state, 
inserting the result in equation (7) and this expression in 
equation (6), it is possible to connect the nonstationary 
with the stationary beam state. From this, the polynomial 
below for the fraction of halo particles ݂ arises ݂ܣଶ + ݂ܤ + ܥ = 0, (9)
whose the solution between 0 ≤ ݂ ≤ 1 is desired. 

RESULTS 
The results obtained with the model in both 

approximations are compared with those extracted from 
full ܰ-particle numerical simulations in Figure 3 and 
Table 1. The particle densities obtained at equilibrium are 
presented in Figure 3(a) for the core and in Figure 3(b) for 
the halo. ߣఈ is the linear version of ݊ఈ and Δఈ is the bin 
size of the histograms computed through full simulations 
ߙ) = {ܿ, ℎ}). In the Table 1, is presented the results for ݂, ݎ௕ e ߳ at equilibrium. Although results in the semi-circular 
approximation are reasonable, the semi-elliptical 
approach shows to be better for small mismatches. These 
results approximate more of those supplied by the full 
simulations for ݎ௢ < 1.4. In Table 1, it is also shown the 
values for ݎ௖, ݎ௛, and ݎ௛ᇱ  for each initial mismatch ݎ௢, 
employed to evaluate equation (9) for the obtainment of ݂. 

 
Figure 3: Comparison between the modeled particle 
densities and the results obtained from full ܰ-particle 
beam simulations for (a) the core particles, and for (b) the 
halo particle. Initial mismatch ݎ௢ = 1.5. Bin sizes of Δ௖ = 0.0733 for the core and Δ௛ = 0.1667 for the halo. 

Table 1: Comparison between the results provided by the 
developed analytical model and the results obtained from 
full self-consistent ܰ-particle beam simulations. ݎ௢ = 1.0 ௢ݎ = ௢ݎ 1.2 = ௢ݎ 1.4 = ௢ݎ 1.6 = ௖ݎ 1.8 = 1 ≅ 1.05 ≅ 1.10 ≅ 1.10 ≅ ௛ݎ 1.20 = 0 ≅ 1.68 ≅ 1.88 ≅ 2.00 ≅ ′௛ݎ 2.13 = 0 ≅ 1.50 ≅ 1.65 ≅ 1.85 ≅ 2.00 

Semicircular approximation ݂ = 0 ≅ 0.00566 ≅ 0.04666 ≅ 0.08098 ≅ ௕ݎ0.13185 = 1 ≅ 1.03474 ≅ 1.11179 ≅ 1.21944 ≅ 1.33770߳ = 0 ≅ 0.27512 ≅ 0.54021 ≅ 0.85104 ≅ 1.18855
Semi-elliptical approximation ݂ = 0 ≅ 0.01072 ≅ 0.04901 ≅ 0.08336 ≅ ௕ݎ0.13503 = 1 ≅ 1.03381 ≅ 1.11181 ≅ 1.21946 ≅ 1.33772߳ = 0 ≅ 0.27111 ≅ 0.54026 ≅ 0.85108 ≅ 1.18862

Self-consistent Numerical Simulations ݂ = 0 ≅ 0.02080 ≅ 0.05181 ≅ 0.08353 ≅ ௕ݎ0.13286 = 1 ≅ 1.02893 ≅ 1.08063 ≅ 1.16717 ≅ 1.28389߳ = 0 ≅ 0.23535 ≅ 0.45312 ≅ 0.76491 ≅ 1.12057
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