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Abstract

The knowledge of the distribution in a ring of the non-
linear components is important for the resonance compen-
sation. We suggest a method to measure the lattice nonlin-
ear components based on the nonlinear tune response to a
locally controlled closed orbit (CO) deformation. A test of
this concept in the SIS18 synchrotron is presented.

INTRODUCTION

The nonlinear field errors in the magnets excite un-
wanted resonances, which cause beam loss and dynamic
aperture reduction during the machine operation. For the
‘new’ SIS18 working point proposed in [1] (Qx = 4.2,
Qy = 3.6) it may be necessary to compensate several of
the existing resonances in order to avoid beam loss and im-
prove machine performance. Therefore, a new technique to
diagnose nonlinear field components based on the tune re-
sponse to the deformed CO was developed. The approach
used is similar to the orbit response matrix (ORM) method,
where the CO response to the steering angle change pro-
vides information on the linear field errors. The method
presented here extends the ORM analogy to the nonlinear
errors with the difference that the tune response to the steer-
ing angle change is measured. The method is therefore re-
ferred to nonlinear tune response matrix (NTRM). The feed
down effect of the nonlinear components at the level of lin-
ear tune due to the CO change is explored.

NTRM: THE LINEARIZED THEORY

The linear model of a circular accelerator is com-
posed by a sequence of linear thick elements as drifts,
quadrupoles and dipoles. The strengths of the linear focus-
ing forces are defined by kx(s) and ky(s), where s is the
longitudinal coordinate. It is assumed that the accelerator
is equipped with Nt thin steerers. The longitudinal location
of the tth steerer is st, and its steering angle is θxt in the
horizontal plane, θyt in the vertical plane, respectively. Nl

thin nonlinear elements are included in the ring. A nonline-
ar element can be a lattice sextupole or octupole as well as
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Figure 1: Nonlinear errors and steerer locations.
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a dipole or quadrupole magnet nonlinear error. In general,
the lth nonlinear error located at s l is composed of several
multipoles of integrated strength Knl, Jnl, n ≥ 1. Here the
index n is used to indicate the order of the nonlinear com-
ponent, and l the location. A schematic of the sequence of
error-steerer is shown in Fig. 1. The CO is deformed by set-
ting the Nt steering angles θxt and θyt, with t = 1, ..., Nt

to a value different from zero (xCO, x′CO, yCO, y′CO). In
the linear approximation, if the CO deformation is not too
large and the tunes are away from any resonance, the CO
xCOl = xCO(sl) and yCOl = yCO(sl) at the location of
the lth nonlinear element sl is found as following

xCO l =
Nt∑

t=1

Mx
ltθxt , yCO l =

Nt∑

t=1

My
ltθyt , (1)

where the matrices M x
lt and M y

lt are referred to the location
of the nonlinear element and to the location of the steerer.
The matrices Mx and M y form the orbit response matrix
M = Mx

lt ⊕My
lt for the decoupled system. A test particle

coordinate (δx, δx′, δy, δy′) with respect to the deformed
CO (xCO, x′CO, yCO, y′CO) is considered. If the coordi-
nates of the test particle are small, then all the terms of
higher order can be neglected as the tunes are far from any
resonance [2]. The equations of motion reads

δx′′ + (kx + k̃)δx = j̃δy ,

δy′′ + (ky − k̃)δy = j̃δx ,
(2)

where
k̃ =

∑

n≥1

k̃n , j̃ =
∑

n≥1

j̃n . (3)

Equation (2) indicates that the nonlinear components
around the ring produce an extra linear focusing compo-
nent of strength (kx + k̃, ky− k̃) and a linear coupling term
of strength j̃. The two first orders of the components k̃n

and j̃n of the feed down due to deformed CO are: k1 and
j1; k2xCO − j2yCO and k2yCO + j2xCO. The first order
contribution of the gradient error k̃ on the machine tunes
with respect to the distorted CO is

ΔQx, y =
1
4π

∫ C

0

βx, y(s)k̃(s)ds , (4)

and the tunes with respect to the CO are given by Qx =
Qx0 + ΔQx and Qy = Qy0 + ΔQy . Here Qx0 and Qy0

are the tunes of the linear accelerator with the closed orbit
corrected. Equation (4) can be written in matrix form using
Eq. (1) for the CO at the location sl and βxl = βx(sl),
βyl = βy(sl)

ΔQx = xQ +
Nt∑
t=1

(xQx
t θxt + xQy

t θyt) , (5)
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ΔQy = yQ +
Nt∑
t=1

(yQx
t θxt + yQy

t θyt) , (6)

where

xQ =
1
4π

Nl∑
l=1

βxlK1l ,

xQx
t =

1
4π

Nl∑
l=1

βxlK2lM
x
lt ,

xQy
t = − 1

4π

Nl∑
l=1

βxlJ2lM
y
lt ;

(7)

yQ = − 1
4π

Nl∑
l=1

βylK1l ,

yQx
t = − 1

4π

Nl∑
l=1

βylK2lM
x
lt ,

yQy
t =

1
4π

Nl∑
l=1

βylJ2lM
y
lt .

(8)

The linear components K1l, J1l contribute to the tune
Qx, Qy independent on the CO deformation. Therefore the
effective tune due to linear elements will be Qx0,eff =
Qx0 + xQ and Qy0,eff = Qy0 + yQ.

NUMERICAL RECONSTRUCTION

Validating the theoretical NTRM model a numerical re-
construction with MICROMAP of nonlinear components
(strengths and polarity) for the SIS18 was performed. For
this purpose 24 steerers (12 horizontal and 12 vertical) and
24 nonlinear errors (12 normal and 12 skew) given at the lo-
cation of chromatic sextupoles were considered. The tune
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Figure 2: Comparison of 24 numerically reconstructed sex-
tupolar errors (red) with the error set (blue).

of the machine was set to Qx0 = 4.31 and Qy0 = 3.28
away from the linear coupling resonance. The beam par-
ticle tune was computed using the X coordinate over 2048
turns. By the procedure described in the previous section
the numerical coefficients xQx

t and xQy
t were retrieved and

used to solve the linear system (7) for the unknown vari-
ables K2n and J2n. The results obtained by applying the
NTRM model are shown in Fig. 2. The squares refer to nor-
mal components K2, while the triangular markers refer to
skew components J2. The reconstructed values agree quite
well with the given values.

EXPERIMENTAL PROOF OF PRINCIPLE

The presented NTRM model was experimentally vali-
dated in reconstruction of sextpolar errors in the SIS18.
The coherent betatron oscillations of a coasting beam were
excited by a fast kick at extraction energy of about 416
MeV/u and a medium intensity level of approximately
108 − 109 particles. The kick of about 0.15 mrad was
given on 45◦ in both x- and y-planes. The chromaticity
was corrected and 2048 turns were measured. The frac-
tional part of tunes were retrieved using FFT with data fil-
tering [3]. A one turn injection was optimized to create a
‘pencil’ like beam to exclude finite beam size effects on the
tune. Transverse rms-emittances obtained from the mea-
sured beam profiles are (εx, εy) ≈ (1.4, 1.4) mm mrad.
The tune error estimated in simulations due to the finite
beam size is of the order of 10−5 in the horizontal and
vertical planes for the applied kick amplitude. The co-

Table 1: Additional strengths applied in the sextupoles.
Normal l ΔK2 Cal. Exp. Rel. Err.,
errors ×10−2, [m−2] %

S1 1 -2 -1.999 -1.797 10.5
2 1 1.001 1.018 1.8

S2 1 -4 -3.998 -4.133 3.3
2 2 2.002 1.546 22.7

S3 1 -8 -7.995 -7.609 4.9
2 4 4.007 3.902 2.5

S4 1 5 5.008 4.971 0.6
2 -3 -2.997 -2.739 8.7

Skew l ΔJ2 Cal. Exp. Rel. Err.,
errors ×10−3, [m−2] %

S1 1 8.32 8.35 7.13 14.6
2 8.32 8.35 7.29 12.7

S2 1 8.32 8.33 8.76 5.2
2 -8.32 -8.31 -4.52 45.6

herent oscillations are measured for each steering setting
of the changed CO. The tune response with chromatic sex-
tupoles powered on (referred to the setting S0) is measured.
Then two sextupoles for chromatic correction get a small
extra probing strength error, and the tune response is re-
measured for the same CO deformation. By subtracting
the two tune response curves, the resulting differential tune
response depends solely from the extra probing error added
on the sextupoles. As the probing errors are folded linearly
into the terms xQx

t , the experimental task is to measure the
differential tune response and obtaining xQx

t . For com-
pleteness, the measurement was repeated for several prob-
ing error strengths ΔK2, signs and locations. When the
normal probing errors are excited, only horizontal defor-
mation of the CO can reveal them (the terms xQy

t and yQy
t

are absent), see Fig. 3. The same procedure was repeated
in the vertical plane with yQy

t , where additional two skew
sextupoles were powered, see Fig. 4. The tune response in
the vertical plane to the vertical CO change was measured.
The results obtained from the simulations and experiments
are summarized in Table 1.
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Figure 3: Measured a), c) fractional part of the horizontal
tune vs. horizontal steering angles θ1 and θ2 for different
strengths of the excited two normal sextupoles. The corre-
sponding differential tune response b) and d).

CONCLUSION

The theoretical basis of the NTRM model was presented.
Two normal and two skew sextupolar errors of the order
of natural errors (K2 ≈ 0.01 m−2) were reconstructed in
the SIS18. In general, the accuracy in reconstruction of
sextupolar errors is better than 10 % for sufficiently large
errors out of the chosen range. The practical side of the re-
construction technique is still under development. It can be
also applied to reconstruct octupolar errors, finally, to re-
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Figure 4: Measured a), c) fractional part of the vertical tune
vs. vertical steering angles θ1 and θ2 for different strengths
of the excited two skew sextupoles. The corresponding dif-
ferential tune response b) and d).

construct sextupolar and octupolar field errors in the com-
plete machine in order to compensate them.
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