
SAFETY TESTING FOR LHC ACCESS SYSTEM
F. Valentini, T. Ladzinski, P. Ninin, L.Scibile CERN, Geneva, Switzerland

Abstract
In the domain of Safety Real-Time Systems the problem

of testing represents always a big effort in terms of time,
costs and efficiency to guarantee an adequate coverage
degree. Exhaustive tests may, in fact, not be practicable
for large and distributed systems. This paper describes the
testing process followed during the validation of the
CERN’s LHC Access System [1], responsible for
monitoring and preventing physical risks for the
personnel accessing the underground areas. In the paper
we also present a novel strategy for the testing problem,
intended to drastically reduce the time for the test patterns
generation and execution. In particular, we propose a
methodology for black-box testing that relies on the
application of Model Checking techniques. Model
Checking is a formal method from computer science,
commonly adopted to prove correctness of system’s
models through an automatic system’s state space
exploration against some property formulas.

INTRODUCTION
 In environments where safety of human life represents
an operational constraint, exhaustive testing is an ideal
methodology to ensure the correct system behaviour even
in extremely rare conditions. However, the high cost in
terms of time and resources makes such approach
effectively not practicable.
Referring to a black-box testing scenario, we adopted a
test selection and an adequacy criterion [4] leading the
whole validation process of the LHC Access Control and
Safety System. The implementation of a dedicated test
hardware platform was then necessary in order to validate
the entire control software distributed among 10 Fail-Safe
Programmable Logic Controllers (PLC).

The LHC Access Control and Safety System is today
responsible for all aspects related to the LHC tunnel
accesses: from the verification of all needed privileges, to
the detection and prevention of any dangerous situation
for the accessing personnel. Particular care has been
dedicated to the safety aspects connected to the operation
of the LHC accelerator where the risk [3] covered by the
Access System project concerns the exposition to
radiation in the LHC tunnel and experimental areas.
The total area supervised by the system includes the
whole 27 Km ring tunnel, divided in 9 sites in turn
partitioned in more zones, classified by the same risk
index. A large number of system component’s states are
continuously monitored by the control software in order
to ensure the persistency of the ‘Safe for Access’
conditions, during periods where access is granted, while
the ‘Safe for Beam’ conditions have to hold during any
LHC operation. Principal types of system’s Elements
Important for Safety [EIS] are:

Access Points – allowing accesses between zones at
different risk and from/to the exterior;
Sector Doors – allowing accesses between different
sectors of a same zone;
End Zone Doors – allowing emergency evacuations
from a zone;
Accelerator Safety Elements – special components
able to block the circulating beams and to prevent
any further injection;

In the first part of the article we describe the LHC
Access System simulation platform, designed to faithfully
reproduce the real system’s architecture. Subsequently,
we introduce an innovative testing methodology, relying
on the application of Formal Methods from computer
science, intended to automatically generate test cases
from requirements.
Testers using this approach concentrate their efforts on
system data model design and on the application of
specific generating algorithms rather than hand-drawing
individual tests. The model is basically a description of
the system behaviour in terms of its visible actions, given
by a formal language. The test case generation relies
instead on Model Checking algorithms.
Model Checking is a technique developed for verifying
finite-state systems. Given a system model, normally
expressed in terms of a Labelled Transition System (LTS),
and a system property written as a temporal logic formula
[5], the model checker can determine whether the model
satisfies the property formula, through an automatic state
space exploration. In addition to being fully automatic, an
important feature of model checkers is that a
counterexample can be supplied to demonstrate whenever
the model fails to satisfy the specified property. A
counterexample is a path, a sequence of system actions, in
the execution of the model leading to a particular system’s
state where the given property formula is violated.

We show how a system property formula can be turned
into a test case and its violating paths used as executable
tests.

TEST PLATFORM ARCHITECTURE
The aim of the simulation and test platform, shown in

figure 1, is to reproduce the real environment where the
Safety PLCs and all supervising/control software is going
to operate.

Safety software for each LHC site, controlled by a
dedicated fails-safe PLC, has been independently tested
on the platform before being put in operation. This form
of validation allowed to minimize the final test campaign
conducted in the field, particularly time consuming due
the number and the distribution of the controlled
elements, installed throughout the 27 Km of LHC’s ring.

MOPD037 Proceedings of EPAC08, Genoa, Italy

06 Instrumentation, Controls, Feedback & Operational Aspects

532

T18 Radiation Monitoring and Safety

Figure 1: Architecture of the LHC Access System Test Platform

Emulation Station
The core of the platform is the Emulation Station (1)

which consists in a standard PC containing the list of all
controlled equipment. A specific software allows sending
EIS emulated inputs/outputs via Ethernet connection to a
non safety Siemens PLC (2), used as a gateway to the
fail-safe PLCs under test (4).

External Equipment
This platform offers the possibility to plug real

equipment (3), as Sector Doors or Access Points, to the
safety PLCs under test.

Site’s Safety PLC Validation
The access safety conditions to the entire LHC tunnel

are controlled independently in each site by 2 redundant
fail-safe PLCs synchronized by a central global PLC (5)
and communicating on the same Ethernet network. The
Test Platform allows simulating and testing two sites at
the time (4), both receiving inputs from the gateway PLC
(2) and from the global PLC (5). The sites under test
consist in two couple of redundant and fail-safe Siemens
PLCs.

Central Access Control Panel
The Main Access Control Console (6), used to open or

close the access at each LHC site and to start the
accelerator is also reproduced in this Test Platform. The
Access Console communicates directly, via direct cable
connections, with the Global Interlock (GI) Controller (5)
which also consists in a Siemens fail-safe and redundant
PLC. As well as receiving commands from the Access
Main Console, the GI constantly coordinates and
monitors the activity of each local site PLCs in order to be

able to evaluate, at any time, the ‘Safe for Access’ and the
‘Safe for Beam’ conditions.

Supervising Consoles
All Supervising Consoles (8), used by the control room

operators to graphically display the equipment states and
to change the access modes (general, restricted, closed,
patrol), are also reproduced in the Test Platform.

The test platform was used to validate all system safety
functions as they are described in the project’s functional
specification document. Every safety functionality was
tested with a specific scenario where all relevant system
inputs were exercised in order to verify the correctness of
the safety function response. All test input signals were
emulated exhaustively, one by one, setting values
manually on the emulation station (2), but without
consider all possible interleaving that concurrent events
could generate.
The approach, under study, presented in the next chapter
is intended to treat concurrency tests, allowing the
automatic executions of all possible input interleaving for
a given safety function.

AUTOMATIC TESTING
We present a technique belonging to the so called

Model-Based approach intended to automatically derive
test patterns from a formal model of the system under
validation. Tests derived in this way are normally called
“abstract” because explicit operations of data mapping
are necessary to obtain concrete executable tests.
We assume that the test strategy is oriented to the
validation of each system’s requirement trough

Proceedings of EPAC08, Genoa, Italy MOPD037

06 Instrumentation, Controls, Feedback & Operational Aspects T18 Radiation Monitoring and Safety

533

appropriate test cases according to the well known
Specification-Based testing criterion [4].

Our approach consists in automatically deriving test
sequences for a particular Test Case defined for the
system under test. In practical use, the system is modelled
with the Labelled Transition System (LTS) formalism,
while each Test Case is described by a logic formula,
expressed with Linear Temporal Logic (LTL) algebra and
representing a system property. After this point, thanks to
the Model Checking capability to exhibit counter-
examples in correspondence of any system property
violation, the whole process of the test input pattern
generation becomes completely automatic.

System Modelling
The first step is to model each system requirement
independently using the LTS formalism. Requirements
are hence used as a criterion to partition the global system
state space, which is usually impossible to represent
completely in a single monolithic model.
 The requirement modelling task must follow some basic
guidelines:

Models must be closed to the requirement,
describing only the system’s visible actions directly
related to the requirement under validation;
Models must keep a high level of adherence with
part of the real system functioning. Any form of
synthesis or abstraction should be avoided here.

The modelling phase is hence aimed at producing
independent and precise models of the real system
behaviour, representing a formal description of each
system’s requirement.

Test Case Definition
A Test Case covers a particular system behaviour
(functionality) we are interested to verify, by assigning
for example different values to a particular subset of the
system variables.
The Linear Temporal Logic (LTL) is the formalism we
use to conveniently express all possible Test Cases. In
LTL it is possible to encode formulae about the future of
system’s events such that a condition will eventually be
true, that a condition will be true until another fact
becomes true, etc.
We used the capability of LTL formulae operators to
reason about future, past and to establish timing relations
between events in the system in order to formally
represent each test case, which will be then seen as a
system safety property ().
In the case of study presented in this paper, a legitimate
Test Case, used to test every event driving to an unsafe
state of a given sector X in RESTRICTED mode, will be
formulated with the following system safety property:

“The sector X can NEVER become unsafe IF the access
level is set to Restricted”

which in LTL language, using the Until operator, would
be formalized:

 = (sector X = safe) U (access Restricted)

to express the fact that any event making the sector X
unsafe when the access level is set to Restricted
represents a safety system violation and it is a significant
test.

Test Input Pattern Extraction
Previously we described how model checking is used to
check if a given property () is valid in a model (M):

M
then if the property is not hold by the model, a
counterexample path:

Act1 Act2 ….. ActN Error
leading to the violation of () is shown.
Each property formula violation trace, obtained via the
Model Checking proofing capability, represents one
possible executable path on the LTS system model and
can serve as abstract test. If the system property () is
correctly specified, then all LTS executable paths
obtained in this way are exactly all the existing valid tests
for the considered Test Case.

CONCLUSION
In this paper we showed the importance of having an

appropriate test platform, in order to reproduce real cases
for safety PLC based software.
The need to approach this problem in the most efficient
and safe possible way, forced us to realize a complex
dedicated test hardware, but also to adopt a punctual test
methodology in order to be able to estimate a quality
measure for the executed tests.
After this experience, our conviction is that the
automation of the testing process is an important key to
save time, to obtain a much higher degree of coverage and
to treat concurrency aspects of the system.
In the second part of the article we presented an approach
to easily obtain a general purpose test input pattern
generator, based on Model Checking techniques, which
will shortly be implemented for the future validations of
LHC access safety software upgrades.

REFERENCES
[1] P. Ninin, T. Ladzinski et al. “LHC Access System:

From Design to Operation”. (2008) This conference
proceedings.

[2] P. Ninin and L. Scibile, “Access Project Concept
Architecture”, EDMS 477152. (2005) CERN.

[3] P. Ninin, S. Grau, G. Roy “Synthèse de l'analyse
préliminaire des risques”, EDMS 479041. (2005)
CERN.

[4] H. Zhu, P. Hall, J. May, “Software Unit Test
Coverage and Adequacy”. ACM Computing Surveys,
Vol. 29, (1997) UK.

[5] E. Clarke, O. Grumberg, D. Peled, “Model
Checking”. MIT Press, (1999) UK.

[6] M. Broy, B. Jonsson, J. Katoen, M. Leucker, A.
Pretschner “Model-Based Testing of Reactive
Systems”. Springer, (1998) US.

MOPD037 Proceedings of EPAC08, Genoa, Italy

06 Instrumentation, Controls, Feedback & Operational Aspects

534

T18 Radiation Monitoring and Safety

