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Abstract
In the domain of Safety Real-Time Systems the problem 

of testing represents always a big effort in terms of time, 
costs and efficiency to guarantee an adequate coverage 
degree. Exhaustive tests may, in fact, not be practicable 
for large and distributed systems. This paper describes the 
testing process followed during the validation of the 
CERN’s LHC Access System [1], responsible for 
monitoring and preventing physical risks for the 
personnel accessing the underground areas. In the paper 
we also present a novel strategy for the testing problem, 
intended to drastically reduce the time for the test patterns 
generation and execution. In particular, we propose a 
methodology for black-box testing that relies on the 
application of Model Checking techniques. Model 
Checking is a formal method from computer science, 
commonly adopted to prove correctness of system’s 
models through an automatic system’s state space 
exploration against some property formulas.  

INTRODUCTION
   In environments where safety of human life represents 
an operational constraint, exhaustive testing is an ideal 
methodology to ensure the correct system behaviour even 
in extremely rare conditions. However, the high cost in 
terms of time and resources makes such approach 
effectively not practicable.  
Referring to a black-box testing scenario, we adopted a 
test selection and an adequacy criterion [4] leading the 
whole validation process of the LHC Access Control and 
Safety System. The implementation of a dedicated test 
hardware platform was then necessary in order to validate 
the entire control software distributed among 10 Fail-Safe
Programmable Logic Controllers (PLC). 

The LHC Access Control and Safety System is today 
responsible for all aspects related to the LHC tunnel 
accesses: from the verification of all needed privileges, to 
the detection and prevention of any dangerous situation 
for the accessing personnel. Particular care has been 
dedicated to the safety aspects connected to the operation 
of the LHC accelerator where the risk [3] covered by the 
Access System project concerns the exposition to 
radiation in the LHC tunnel and experimental areas.  
The total area supervised by the system includes the 
whole 27 Km ring tunnel, divided in 9 sites in turn 
partitioned in more zones, classified by the same risk 
index. A large number of system component’s states are 
continuously monitored by the control software in order 
to ensure the persistency of the ‘Safe for Access’
conditions, during periods where access is granted, while 
the ‘Safe for Beam’ conditions have to hold during any 
LHC operation. Principal types of system’s Elements 
Important for Safety [EIS] are: 

Access Points – allowing accesses between zones at 
different risk and from/to the exterior; 
Sector Doors – allowing accesses between different 
sectors of a same zone; 
End Zone Doors – allowing emergency evacuations 
from a zone; 
Accelerator Safety Elements – special components 
able to block the circulating beams and to prevent 
any further injection; 

In the first part of the article we describe the LHC 
Access System simulation platform, designed to faithfully 
reproduce the real system’s architecture.  Subsequently, 
we introduce an innovative testing methodology, relying 
on the application of Formal Methods from computer 
science, intended to automatically generate test cases 
from requirements.  
Testers using this approach concentrate their efforts on 
system data model design and on the application of 
specific generating algorithms rather than hand-drawing 
individual tests.  The model is basically a description of 
the system behaviour in terms of its visible actions, given 
by a formal language. The test case generation relies 
instead on Model Checking algorithms. 
Model Checking is a technique developed for verifying 
finite-state systems. Given a system model, normally 
expressed in terms of a Labelled Transition System (LTS), 
and a system property written as a temporal logic formula 
[5], the model checker can determine whether the model 
satisfies the property formula, through an automatic state 
space exploration. In addition to being fully automatic, an 
important feature of model checkers is that a 
counterexample can be supplied to demonstrate whenever 
the model fails to satisfy the specified property. A 
counterexample is a path, a sequence of system actions, in 
the execution of the model leading to a particular system’s 
state where the given property formula is violated.  

We show how a system property formula can be turned 
into a test case and its violating paths used as executable 
tests.

TEST PLATFORM ARCHITECTURE 
The aim of the simulation and test platform, shown in 

figure 1, is to reproduce the real environment where the 
Safety PLCs and all supervising/control software is going 
to operate.  

Safety software for each LHC site, controlled by a 
dedicated fails-safe PLC, has been independently tested 
on the platform before being put in operation. This form 
of validation allowed to minimize the final test campaign 
conducted in the field, particularly time consuming due 
the number and the distribution of the controlled 
elements, installed throughout the 27 Km of LHC’s ring. 

MOPD037 Proceedings of EPAC08, Genoa, Italy

06 Instrumentation, Controls, Feedback & Operational Aspects

532

T18 Radiation Monitoring and Safety



Figure 1: Architecture of the LHC Access System Test Platform 

Emulation Station 
The core of the platform is the Emulation Station (1)

which consists in a standard PC containing the list of all 
controlled equipment. A specific software allows sending 
EIS emulated inputs/outputs via Ethernet connection to a 
non safety Siemens PLC (2), used as a gateway to the 
fail-safe PLCs under test (4).  

External Equipment 
This platform offers the possibility to plug real 

equipment (3), as Sector Doors or Access Points, to the 
safety PLCs under test. 

Site’s Safety PLC Validation 
The access safety conditions to the entire LHC tunnel 

are controlled independently in each site by 2 redundant 
fail-safe PLCs synchronized by a central global PLC (5)
and communicating on the same Ethernet network. The 
Test Platform allows simulating and testing two sites at 
the time (4), both receiving inputs from the gateway PLC 
(2) and from the global PLC (5). The sites under test 
consist in two couple of redundant and fail-safe Siemens 
PLCs.

Central Access Control Panel 
The Main Access Control Console (6), used to open or 

close the access at each LHC site and to start the 
accelerator is also reproduced in this Test Platform. The 
Access Console communicates directly, via direct cable 
connections, with the Global Interlock (GI) Controller (5)
which also consists in a Siemens fail-safe and redundant 
PLC. As well as receiving commands from the Access 
Main Console, the GI constantly coordinates and 
monitors the activity of each local site PLCs in order to be 

able to evaluate, at any time, the ‘Safe for Access’ and the 
‘Safe for Beam’ conditions. 

Supervising Consoles 
All Supervising Consoles (8), used by the control room 

operators to graphically display the equipment states and 
to change the access modes (general, restricted, closed, 
patrol), are also reproduced in the Test Platform. 

The test platform was used to validate all system safety 
functions as they are described in the project’s functional 
specification document. Every safety functionality was 
tested with a specific scenario where all relevant system 
inputs were exercised in order to verify the correctness of 
the safety function response. All test input signals were 
emulated exhaustively, one by one, setting values 
manually on the emulation station (2), but without 
consider all possible interleaving that concurrent events 
could generate.  
The approach, under study, presented in the next chapter 
is intended to treat concurrency tests, allowing the 
automatic executions of all possible input interleaving for 
a given safety function. 

AUTOMATIC TESTING 
We present a technique belonging to the so called 

Model-Based approach intended to automatically derive 
test patterns from a formal model of the system under 
validation. Tests derived in this way are normally called 
“abstract” because explicit operations of data mapping 
are necessary to obtain concrete executable tests. 
We assume that the test strategy is oriented to the 
validation of each system’s requirement trough 
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appropriate test cases according to the well known 
Specification-Based testing criterion [4]. 

Our approach consists in automatically deriving test 
sequences for a particular Test Case defined for the 
system under test. In practical use, the system is modelled 
with the Labelled Transition System (LTS) formalism, 
while each Test Case is described by a logic formula, 
expressed with Linear Temporal Logic (LTL) algebra and 
representing a system property. After this point, thanks to 
the Model Checking capability to exhibit counter-
examples in correspondence of any system property 
violation, the whole process of the test input pattern 
generation becomes completely automatic. 

System Modelling 
The first step is to model each system requirement 
independently using the LTS formalism. Requirements 
are hence used as a criterion to partition the global system 
state space, which is usually impossible to represent 
completely in a single monolithic model.   
 The requirement modelling task must follow some basic 
guidelines: 

Models must be closed to the requirement, 
describing only the system’s visible actions directly 
related to the requirement under validation; 
Models must keep a high level of adherence with 
part of the real system functioning. Any form of 
synthesis or abstraction should be avoided here. 

The modelling phase is hence aimed at producing 
independent and precise models of the real system 
behaviour, representing a formal description of each 
system’s requirement. 

Test Case Definition 
A Test Case covers a particular system behaviour 
(functionality) we are interested to verify, by assigning 
for example different values to a particular subset of the 
system variables. 
The Linear Temporal Logic (LTL) is the formalism we 
use to conveniently express all possible Test Cases. In 
LTL it is possible to encode formulae about the future of 
system’s events such that a condition will eventually be 
true, that a condition will be true until another fact 
becomes true, etc. 
We used the capability of LTL formulae operators to 
reason about future, past and to establish timing relations 
between events in the system in order to formally 
represent each test case, which will be then seen as a 
system safety property ( ).
In the case of study presented in this paper, a legitimate 
Test Case, used to test every event driving to an unsafe
state of a given sector X in RESTRICTED mode, will be 
formulated with the following system safety property: 

“The sector X can NEVER become unsafe IF the access 
level is set to Restricted”

which in LTL language, using the Until operator, would 
be formalized:  

 =   (sector X = safe) U (access  Restricted)

to express the fact that any event making the sector X 
unsafe when the access level is set to Restricted 
represents a safety system violation and it is a significant 
test.

Test Input Pattern Extraction 
Previously we described how model checking is used to 
check if a given property ( ) is valid in a model (M): 

M
then if the property is not hold by the model, a 
counterexample path: 

Act1  Act2  ….. ActN Error
leading to the violation of  ( ) is shown. 
Each property formula violation trace, obtained via the 
Model Checking proofing capability, represents one 
possible executable path on the LTS system model and 
can serve as abstract test. If the system property ( ) is 
correctly specified, then all LTS executable paths 
obtained in this way are exactly all the existing valid tests 
for the considered Test Case. 

CONCLUSION 
In this paper we showed the importance of having an 

appropriate test platform, in order to reproduce real cases 
for safety PLC based software. 
The need to approach this problem in the most efficient 
and safe possible way, forced us to realize a complex 
dedicated test hardware, but also to adopt a punctual test 
methodology in order to be able to estimate a quality 
measure for the executed tests. 
After this experience, our conviction is that the 
automation of the testing process is an important key to 
save time, to obtain a much higher degree of coverage and 
to treat concurrency aspects of the system. 
In the second part of the article we presented an approach 
to easily obtain a general purpose test input pattern 
generator, based on Model Checking techniques, which 
will shortly be implemented for the future validations of 
LHC access safety software upgrades. 
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