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Abstract 
  Recently, a non-trivial space-charge limit for off-axis 
bunched electron beams in a coaxial conducting structure 
was derived theoretically [1]. The space-charge limit 
describes the minimum strength of an external solenoidal 
focusing field which is needed to stabilize the beam’s 
center-of-mass motion in the presence of induced surface 
charges on the coaxial structure. In this paper, we perform 
a parametric study of the space-charge limit to 
numerically determine its dependency on the conducting 
structure geometry, i.e., the ratio of the inner and outer 
conductor radii, as well as its’ dependency on the 
transverse and longitudinal bunch distributions.  

 

INTRODUCTION 
When modeling the physics of high-current (100’s A- 

10 kA) bunched electron beams which are often utilized 
in high-power microwave sources, such as klystrons, it is 
essential to understand the critical space-charge limits 
associated with these beams.  Well-known space-charge 
limits, such as the Brillouin limit [2] for circularly 
symmetric unbunched beams, are regularly used in the  
design of klystrons [3] and ubitrons [4].   More recently, a 
new space-charge limit has emerged which predicts the 
onset of an instability for a slightly off-axis electron beam 
propagating in a circularly symmetric conducting 
structure.  The essential physics of this instability is that 
the center-of-mass of the off-axis bunch “feels” an 
attractive force due to the image charges on the surface of 
the conductor.  If an external magnetic solenoidal field is 
used for beam focusing there will be a minimum critical 
magnetic field, such that below this field, the beam’s 
center-of-mass will move further off-axis.  This instability 
was first computed for a circular conducting pipe [5], and 
then later computed for a coaxial structure [1]. 

In Ref. 1, the present author found a rather complicated 
expression for the total center-of-mass force and 
corresponding space-charge limit for a beam with an 
arbitrary charge distribution which was circularly 
symmetric about its’ own axis.  In addition, the author 
numerically calculated the space-charge limit for the 
special case of an annular ring (zero radial thickness)  
combined with a Gaussian longitudinal charge 
distribution.   

 
 
While this calculation was useful for understanding, the 

key physics of the instability it was not fully realistic 
since it did not include both a finite radial extent to the 
beam or a general search for how the space-charge limit 
depends on the ratio of the inner/outer radius of the beam.       

In this paper, we extend the results of Ref. 1 by 
performing a full parametric study of the space-charge 
limit for annular electron beams in a coaxial conducting 
structure.   We assume that the inner and outer radii of the 
structure are given by ir and or .  We will also assume 
that the electron bunch has a charge distribution which is 
uniform in the transverse direction and Gaussian in the 
longitudinal direction, i.e. 
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where a and b are the inner and outer radii of the electron 
beam and σ is the rms bunch length of the beam.  The 
key parameters which we will be varying in this study are 
all normalized to the outer coaxial radius.  In particular, 
we will be exploring the dependence of the space-charge 
limit on the normalized inner radius, oi rr , the 
normalized beam radial thickness, ( ) oo rabrr −=δ  , 
and the normalized bunch length, orσ .   In general, there 
is also a fourth parameter which is a measure of the 
average radius of the beam, i.e. ( ) ooave rbarr 2+= .  
However, in Ref. 1, we found that the space-charge limit 
was maximized when the beam was centered roughly 
midway between the two boundary surfaces.  .  Hence, in 
order to simplify this study, we will assume that 

( ) ooioave rrrrr 2+= . 
The space-charge limit for a beam with total number of 

particles bN in the presence of a uniform magnetic field, 

zoeBB ˆ=
r

, was found in Ref. 1 to be  
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    ( ) ( ) ( ) ( )rkKkrIkrKrkIG ′+′= 0000 , 
and ( )xIν  and ( )xKν  are the modified Bessel functions 
of the first and second kind respectively.  The limit shown 
in Eq. (2) was computed in Ref. 1 by calculating the total 
center-of-mass force on the bunch due to the induced 
conductor surface charge using a Green’s function 
method.  It was also shown in Ref. 1 that the center-of-
mass motion can be derived from a Hamiltonian method 
which yields the space-charge limit in Eq. (2).   The result 
in Eq. (2) can also be extended to periodic solenoidal 
magnetic fields.  For this case, one replaces the magnetic 
field in Eq. (2) with its’ root-mean-square value. 

 

                PARAMETRIC STUDY 
The primary results of our parametric study of the off-

axis space-charge limit are evaluations of the normalized 
function, ( )oooi rrrrrf σδ ,,1 , which is the right hand 
side of the space-charge limit in Eq. (2).  For the charge 
distribution given by Eq. (1), it is possible to analytically 
compute the r and z integrals in Eq. (2).  However, the 
remaining integral over k and hence, f1 , can only be 
evaluated numerically.  Our study was performed by 
choosing a value of  oi rr , and then plotting f1  as a 
function of orrδ for different values of orσ .  We note 
that since the beam radii must be bounded by the 
conductor radii, i.e. oi rbar ≤≤≤ , then the x-axes of the 
plots vary in the range oio rrrr ≤≤ δ0   

Figures 1,2, and 3 show the numerical results of f1 vs. 

orrδ for the normalized inner conductor ratios of  

oi rr = 0.25, 0.50, and 0.75, respectively.  Within each 
figure, we use the normalized bunch lengths orσ = 0.0 
(solid curve), 0.5 (dashed curve), 1.0 (dotted curve), 1.5 
(dashed with one dot), and 2.0 (dashed with two dots).    

The figures contain a number of important features, 
which we will now explain.  First, the value of f1 for 

orσ = 0.0 always goes to zero as the beam radii 
approaches the conductor radii, i.e. oio rrrr →δ .  The 
reason for this is simple.  For a zero longitudinal thickness 
beam, the induced conductor surface charges are highly 
localized and form a sharp ringlike distribution as the 
beam edges approach the conductor surfaces.  At this 
point, the total center-of-mass force on the bunch will go 
to infinity, and the corresponding space-charge limit will 
be zero.  Another obvious feature is that as the bunch 

length increases , f1 , also increases.  Physically this 
occurs because a charge distribution which is less 
localized will induce a surface charge distribution which 
is also less localized. A third feature is that as the bunch 
length is increased (bunch becomes more two 
dimensional), the value of f1 , becomes less dependent 
on the value of  orrδ .  This is consistent with previous 
space-charge limit results for the case of a single 
conductor pipe [5] in which the space-charge limit for a 
two-dimensional bunch was shown to be independent of 
the choice in transverse charge distribution.  

Finally, we can also see that as the inner conductor  
radius, oi rr , is increased the space-charge limit is also 
increased. The physical reason for this is that as oi rr is 
increased then the relative distance between the 
conductors is decreased.  This gives rise to an overall 
increase in the beam-conductor surface interaction, and 
hence, a decrease in the space-charge limit.    

 
Figure 1: Plots of f1 vs. orrδ for the normalized inner 
conductor ratio of oi rr = 0.25 and bunch lengths orσ = 
0.0 , 0.5, 1.0, 1.5, and 2.0.    

 
Figure 2: Plots of f1 vs. orrδ for the normalized inner 
conductor ratio of oi rr = 0.50 and bunch lengths orσ = 
0.0 , 0.5, 1.0, 1.5, and 2.0.    
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Figure 3: Plots of f1 vs. orrδ for the normalized inner 
conductor ratio of oi rr = 0.75 and bunch lengths orσ = 
0.0 , 0.5, 1.0, 1.5, and 2.0.    

 
 

DISCUSSION 
We will now address a few key points regarding our 

parametric study of the coaxial space-charge limit.  The 
first point deals with the behavior of the zero bunch 
length orσ = 0.0 curve near its’ zero point shown in 
Figures 1,2, and 3.  This zero point can be readily shown 
using the asymptotic behavior of the Bessel functions 
found in Eq. (2).  In particular, one can show that the 
space-charge limit near its zero point scales as, 

           [ ]ooi rrrrf δ−−
−∝

1ln
11 .                   (3) 

In essence, the zero point of the space-charge limit for a 
zero bunch length charge distribution occurs at the 
point oio rrrr =δ ,  but the rate of decrease of the space-
charge limit near this point is exponentially slow.  The 
exponentially slow decrease in the space-charge limit is 
an artifact of the extended charge distribution, and how it 
couples to the induced surface charge on the wall.  That 
is, even though the 2-D, pancake-like, electron bunch has 
a center-of-mass force acting on it which is approaching 
infinity as the beam edges approach the conductor pipe 
surfaces, this force is infitesimally small compared to the 
force on a 1-D ringlike charge distribution with its’ beam 
edge approaching the conductor surface.    

Another key point of the space-charge limit which is not 
immediately apparent from this study, is that the limit can 
be drastically lowered when the transverse bunch 
distribution is not centered near the midpoint of the two 
conductor surfaces.  This effect is most noticeable when 
the bunch length is sufficiently short which is in 
agreement with the results of this study in that long bunch 
lengths yield space-charge limits that are independent of 
the transverse distribution.  For a zero bunch length 
charge distribution which is a 1-D ringlike distribution, 
the space-charge limit approaches zero as the beam edge 
approaches either conductor surface. 
 

 

SUMMARY 
In this paper, we have shown the results of a parametric 

study for a bunched beam space-charge limit in coaxial 
conducting structures.  The space-charge limit derived in 
Ref. 1 is an off-axis center-of-mass instability in which 
the beam experiences a force from induced surface 
charges while an external magnetic field is acting to focus 
the beam.   In the case of a coaxial structure, which has 
two conducting surfaces, both surfaces yield a non-
negligible contribution to the center-of-mass force.  The 
parameters which were explored in this study were the 
normalized bunch length, the annular beam thickness, and 
the inner to outer conductor radius ratio.  Qualitatively, 
we have found that a higher inner to outer conductor radii 
ratio will yield a lower space-charge limit.  In addition, 
we have found that larger bunch lengths yield a higher 
space-charge limit with little dependence on the 
transverse density distribution.  Finally, we have found 
that a zero bunch length beam has a zero space-charge 
limit when its’ edges approach the conductor radii.    
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