
G4BEAMLINE PROGRAM FOR RADIATION SIMULATIONS*

Kevin Beard, Thomas Roberts, Muons, Inc, Batavia, Illinois, USA 60510
Pavel Degtiarenko, Jefferson Lab, Newport News, Virginia, USA 23606

Abstract

 Our G4beamline program is a useful and steadily
improving tool to quickly and easily model experimental
equipment and shielding without user programming.

INTRODUCTION
 In current research programs at accelerator facilities
there is often a need to quickly evaluate and sometimes
mitigate potential radiation consequences of variations in
physical setups. Monte Carlo programs (such as Geant4[1])
are capable of realistically modeling such problems, but the
technical details of setting up, running, and interpreting the
required simulations are beyond the ability of all but the
most expert researchers (Figure 1).

Figure 1: Typical radiation simulation.

 We are planning to use G4beamline[2], a program that

is an interface to the Geant4 toolkit that Muons, Inc. has
developed to simulate accelerator beamlines, and extend it
with a graphical user interface to quickly and efficiently
model experimental equipment and its shielding in
experimental halls. The program is flexible, user friendly,
and requires no programming by users, so that even
complex systems can be simulated quickly.

TECHNICAL APPROACH
 Geant4 is an internationally supported particle tracking
toolkit that was developed to simulate particle interactions
in large detectors for high energy and nuclear physics
experiments, and includes most of what is known about the
interactions of particles and matter, including time-varying
electromagnetic fields. G4beamline is a program that
provides a highly flexible and user-friendly interface to the
Geant4 capabilities relevant to simulating beamlines and
requires no programming by users. We proposed to enhance
G4beamline with a graphical user interface (GUI) for the
specification of the system to be simulated. We also propose
to use G4beamline and this new GUI to develop a universal

source term calculation and benchmarking tool for radiation
assessments.

 G4beamline was conceived and designed as a flexible
interface to the Geant4 toolkit specifically intended to
permit the rapid prototyping and evaluation of different
accelerator and beamline designs. It has become a “Swiss
Army Knife” for Geant4 and is currently in use at Fermi,
Jefferson, and Brookhaven labs, Universities of California
Riverside and Mississippi, Illinois Institute of Technology,
and by the MICE and PRISM collaborations. Its internal
programming infrastructure is fully object-oriented, highly
modular, and designed to be easy to extend.
G4beamline uses an ASCII file to specify all aspects of the
simulation. It consists of a series of commands that control
the simulation, define elements to be used in the simulation,
place elements into the simulated world, and direct the
generation of results. The complexity of the input file is
comparable to the complexity of the system to be simulated
(compared to system-specific simulation programs which
are much more complex than the system itself). G4beamline
has a rather large repertoire of common elements used in
particle accelerators and detectors, such as bending
magnets, quadrupole magnets, RF cavities, etc. In addition,
G4beamline makes it easy to layout beamlines that involve
bending magnets and the resulting rotations of elements –
centerline coordinates are available that automatically
handle the details so the user does not need to laboriously
compute the locations and rotations of beamline elements.

 An important feature of G4beamline’s input file is that it is
object oriented: one defines an object (with its internal
structure) and then places that object into the simulated
world (or into another object). This is simpler and more in
line with the way people think of such problems than most
other description-based simulation programs (e.g.
MARS[3], MNCP[4]). Moreover, G4beamline’s input file is
formatted so that anybody familiar with the problem
domain can simply read it, with minimal knowledge of the
input syntax. For instance, it should be clear that this
sequence puts a series of three 2x4x8” lead bricks into the
world along the Z axis (units are mm):

box Brick length=203.2 width=101.6 \
 height=50.8 material=Pb

place Brick z=0
place Brick z=203.2
place Brick z=406.4

 The first line defines an object named “Brick”, and each of
the next 3 lines places an instance of it into the simulated
world. Note that a basic Geant4 program fragment to do this
would require about a page of C++ code; it would be
readable only by someone expert in both C++ and Geant4,
would be more error-prone, and would be more difficult to

* Work supported by DoE STTR grant DE-FG02-6ER86281

Proceedings of EPAC08, Genoa, Italy MOPD017

06 Instrumentation, Controls, Feedback & Operational Aspects T18 Radiation Monitoring and Safety

481

change if, say, one decided to use metric bricks rather than
U.S. ones. This difference in complexity becomes much
greater when complicated objects like magnets or RF
cavities are used, or when rotations are involved.

 It is easy to build up a library of frequently used objects,
greatly reducing the effort and knowledge required to set up
a simulation. A library may include many types of objects,
such as common sources (radioactive, particle beam, cosmic
ray), magnets (dipole, quadrupole, solenoid, …), shielding
components (lead bricks, concrete shielding blocks, …),
detectors (all types), moderated detectors (with different
moderating layers), etc.

Figure 2: Muons passing through virtual detectors.

 Once the system to be simulated is specified in the input
file, particles are tracked using the full accuracy of the
Geant4 toolkit. Extensive visualization capabilities are
included in G4beamline, so the user can see what is being
simulated, and where the simulated particles go (Figures 2
and 3). To permit trade-offs between accuracy and
computation time, several different models for hadronic
interactions are available, and over 100 megabytes of
experimental data are available for use by the more detailed
models; much of these data are specific to neutrons and
photons.

Figure 3: The Muon Ionization Cooling Experiment.

 The existence of open-source toolkits from the physics and
graphics communities has allowed a tremendous
enhancement of software productivity. By building on the
many staff-years invested by the Geant4 collaboration, and
other open-source development communities, the
development of G4beamline was quite modest compared to
its capabilities. Table 1 shows that the total amount of code
in G4beamline is more than 50 times what was actually
written to develop it (excluding the C/C++ language
libraries). While the number of lines of code is not a very
good measure of code complexity, it is an indication of the
fact that programs like G4beamline can be vastly more
general and feature-rich than their bare size might imply.
Moreover, the code size of the toolkits does not fully reflect
the tremendous efforts and hundreds of person-years that
have gone into them.

Table 1: Approximate Amount of Code Contained in
G4beamline.

Software

Component
Approximate
Lines of Code

G4beamline 20,000
Geant4 Toolkit 750,000
Open Inventor

Toolkit
300,000

OpenGL,
Xwindows, etc.

>>100,000

 At present G4beamline has a GUI that can only control the
execution of the program and visualize the system , so we
proposed to implement a graphical user interface (GUI) for
G4beamline to construct and modify the description of the
system to be simulated. At present, the GUI will be
implemented in a stand-alone Java program separate from
G4beamline itself, using an input file to control the program
in the same manner as command-line users.

 The current program’s GUI (Figure 4) is implemented in
Java, layered directly on the Java Swing toolkit. The new
GUI to edit input files will be far more complex, and a more
capable, higher-level toolkit is appropriate. A likely
candidate is the Eclipse open development platform[5].

 A key feature of our design for the GUI program is that the
individual commands and elements it supports will be
automatically generated from the G4beamline source code,
so the two programs will automatically support exactly the
same features as the list of features evolves. This is easy to
do because of the modular structure of the G4beamline
code; this basic approach is already used for the generation
of the chapter on commands in the G4beamline User’s
Guide. All help text, argument lists, and argument
descriptions are contained in the source code for each
command, so the single source will be used 3 ways: in the
program, in the User’s Guide, and in the GUI.

MOPD017 Proceedings of EPAC08, Genoa, Italy

06 Instrumentation, Controls, Feedback & Operational Aspects

482

T18 Radiation Monitoring and Safety

 Our software development methodology emphasizes rapid
prototyping,, and as the saying goes, “we eat our own dog
food” – so we have a strong incentive to develop the user-
friendliest interface. We support Windows, Mac OS, and
Linux standard user interfaces, and the underlying principle
is: A user interface is well-designed when the program
behaves exactly how the user thought it would. Another
important principle is: Simple things should be simple,
but complex things should be possible. We will
implement a GUI that is flexible and 100% user
configurable, but provide it with appropriate defaults so it
works as users expect out-of-the-box.

Figure 4: Current G4beamline GUI.

 The result of this effort will be a graphical user interface to
G4beamline that is as flexible and user-friendly as we can
make it. It will be designed from the ground up with
usability in mind and include extensive menus of elements
and drag & drop placement in a scrollable and zoomable
world.

 Modern software development does not occur
independently of applications. The effective implementation
of these new capabilities for G4beamline requires that we
use the program while developing them. This ensures that
we do not spend time implementing useless features, and
also helps us refine and optimize the user interface to the
new features. In the software engineering literature this
aspect of our methodology is known as “rapid prototyping”,
and we often implement one or more prototypes of a new
feature before finalizing its implementation. For instance,
specific requests from several current users have triggered
this project.

 For example, Jefferson Lab, has a need to quickly
reevaluate radiation doses throughout the experimental halls
in a rapidly changing environment. Each new experimental
configuration requires a new assessment, as its beam
requirements, physical layout, detector arrangement,
shielding, etc. will be unique. To date, this has been done

using Geant3 based models, requiring significant effort to
modify for each experiment.
An additional feature that will be implemented using
G4beamline and its new GUI, which will be of use at
Jefferson Lab and in the wider Geant4 and accelerator
communities, is the creation of a universal Geant4 source
term calculation and benchmarking tool. Such a tool will be
used to model particle yields from simple targets as a
function of the target, beam particle, beam energy,
secondary particle type, secondary particle energy, and
secondary emission angle. This models the radiation fields
around the target and can be used to more efficiently
evaluate experimental backgrounds and required shielding
for the experiments. The various experimental
measurements of particle yields permit us to compare real
data to the model, and to evaluate the accuracy of the
physics processes and simulation parameters chosen for the
model. We expect this to become a valuable tool for
radiation assessments at many accelerator facilities. Such a
tool could also be used by Geant4 developers in justifying
the development and implementation of new physics
models in Geant4.

FUTURE WORK

 Muons, Inc. has the experience and knowledge to provide
consulting services in many areas of accelerator and nuclear
physics, and we are especially adept at applying and
adapting G4beamline to specific customer needs.
G4beamline itself is both an open source and a very open-
ended tool, capable of simulating particle transport and
radiation in just about any system for which a description
can be written. As customer needs are rarely that broad, it
can be advantageous to implement a tool specific to a
particular situation for use by non-experts. An obvious
possibility would be to implement a library of objects
commonly used in such cases, and to package G4beamline
and associated tools into scripts that would permit
technicians who are expert in neither the physics nor these
tools to use them for specific applications

REFERENCES
[1] Geant4 Toolkit - http://geant4.cern.ch
[2] G4beamline – http://g4beamline.muonsinc.com
[3] MARS – http://www-ap.fnal.gov/MARS/
[4] MNCP – http://mncpx.lanl.gov
[5] Eclipse open development platform -

http://www.eclipse.org

Proceedings of EPAC08, Genoa, Italy MOPD017

06 Instrumentation, Controls, Feedback & Operational Aspects T18 Radiation Monitoring and Safety

483

