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Abstract

The calculation code for the acceleration voltage pattern
is usually based on the differential equation of the longitu-
dinal synchrotron motion. We have developed the method
based on the forward-difference equation which satisfies
the synchronization with the bending magnetic field ramp-
ing accurately.

INTRODUCTION

In the case of the Rapid Cycling Synchrotron (RCS),
since the bending magnetic field is usually ramped by si-
nusoidal wave form using resonant network system and
the cycle is fast. It is very important for the longitudinal
particle tracking code to calculate the synchronous particle
motion precisely, because the change of the energy, the rf
frequency and the amplitude of the rf voltage is large. Fur-
thermore, when we perform the particle tracking including
the field error of the bending magnet [1], it is very compli-
cated to calculate the energy gain of the synchronous parti-
cle turn by turn. In the case of the J-PARC RCS, the bend-
ing magnetic field is not pure sinusoidal wave, but have
some higher harmonic components.

The phase stability of the accelerated particles around
the synchronous particle has been investigated well, but the
motion for the synchronous particle is not so much investi-
gated so far. The basic principle of the synchrotron [2, 3] is
that the energy gain ΔE per a turn has a relation with the
bending magnetic field B as

ΔE = Vrf sin φs = 2πρR
dB

dt
, (1)

where Vrf is the amplitude of the acceleration voltage,
φs is the synchronous phase, ρ is the bending radius and
R = C/2π is the average radius which relates to the cir-
cumference C of the accelerator ring. This is a well-known
equation to know how much acceleration voltage the rf cav-
ity feeds into the particle. In order to get the acceleration
voltage from the energy gain, other conditions should be
considered to define φs. The J-PARC RCS employs the
condition that the longitudinal emittance εL and the mo-
mentum filling factor Pf should be kept constant during
almost all of the acceleration period [4]. The calculation
code “RAMA [5, 6]” manages such things.

However, when we use the acceleration voltage calcu-
lated turn by turn from eq.(1) for the longitudinal particle
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tracking code, we found that the energy gain is slightly dif-
ferent from the expected value. This comes from the fact
that eq.(1) consists of the differential of the bending mag-
netic field, whereas what we have to know is the difference
of the bending field turn by turn.

Furthermore, in the conventional longitudinal particle
tracking code, the frequency of the accelerating voltage
frf is proportional to the revolution frequency of the syn-
chronous particle frev as

frf = hfrev , (2)

where h is a harmonic number. It seems to be indifferent to
the synchronous phase φs, that is, such frequency pattern
does not satisfies the energy gain Vrf sin φs turn by turn
accurately.

In this paper, we investigate how to get the accelera-
tion voltage pattern, which is based on the difference equa-
tion of the longitudinal motion and the acceleration voltage
tracking scheme.

DIFFERENCE EQUATION FOR THE
SYNCHRONOUS PARTICLE

Let us consider the energy gain per turn as shown in
Fig. 1. The bending magnetic field has a value of Bn on
n-th turn at the time tn. The particle passes through the rf
cavity at that time, then gets the energy ΔE = Vrf sinφs.
The total energy of the particle changes from E n−1:n to
En:n+1, where the suffix n − 1 : n shows “from (n-1)-th
turn to n-th turn” and n : n + 1 shows “from n-th turn
to (n+1)-th turn”. The momentum of the particle becomes
pn−1:n and pn:n+1. The revolution period of the particle
from (n-1)-th turn to n-th turn is T n−1:n

rev and T n:n+1
rev from

n-th turn to (n+1)-th turn, respectively.
It is considered that there is the relation between the mo-

mentum and the bending magnetic field as

pn−1:n = eBnρ (3)

pn:n+1 = eBn+1ρ , (4)

where e is the elementary charge. These equations mean
that, for example, the particle gets the energy on n-th turn
as that momentum matches with the bending magnetic field
on (n+1)-th turn. This is the principle of the synchrotron
that the energy gain per turn should match with the change
of the bending magnetic field turn by turn.

From the relativistic relations,

pn:n+1 = m0cβ
n:n+1γn:n+1 (5)

En:n+1 = m0c
2

√
1 + (βn:n+1γn:n+1)2 , (6)
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Figure 1: The schematic view of the energy gain turn by
turn.

where m0 is the rest mass of the particle, β is the ratio of
the velocity to the speed of light c and γ = 1/

√
1− β2,

respectively. Combining the eq.(4), (5) and (6), we obtain
that

En:n+1 = m0c
2

√
1 +

(
Bn+1ρ

m0c

)
. (7)

On the other hand, the revolution period from n-th turn to
the (n+1)-th turn is

T n:n+1
rev =

C

βn:n+1c
, (8)

where we assume the orbit of the synchronous particle
traces the center of the ring. From the another expression
of eq.(6),

En:n+1 = γn:n+1m0c
2 . (9)

Combining the eq.(5), (8) and (9) we obtain

En:n+1 =
Bn+1c

2ρ

C
T n:n+1

rev . (10)

Since the equations (7) and (10) should have the same
value,

m0c
2

√
1 +

(
Bn+1ρ

m0c

)2

=
Bn+1c

2ρ

C
T n:n+1

rev . (11)

Since the time tn+1 = tn+T n:n+1
rev , then we rewrite eq.(11)

using the revolution period as

m0c
2

√

1 +
(

B(tn + T n:n+1
rev )ρ

m0c

)2

=
B(tn + T n:n+1

rev )c2ρ

C
T n:n+1

rev . (12)

This is the equation of the synchronous particle motion
by the forward-difference method. We can get the revo-
lution period from eq.(12), and when the bending magnetic
field pattern is defined, the revolution period is also defined
uniquely.

Once the revolution period is obtained, we can calculate
the energy gain per turn as

ΔE = Vrf sin φs = En:n+1 − En−1:n

= m0c
2

√

1 +
(

B(tn + T n:n+1
rev )ρ

m0c

)2

−m0c
2

√
1 +

(
B(tn)ρ
m0c

)2

(13)
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Figure 2: The difference between the conventional method
and the forward-difference one.

In the longitudinal particle tracking code, the conven-
tional method to track the synchronous particle is that the
energy gain per turn is obtained from eq.(1) at first, then the
revolution period T n

rev is calculated according to the energy
at the time tn. It is not confirmed precisely that the period is
really synchronized with the bending magnetic field. In the
case of the forward-difference method, the revolution pe-
riod T n:n+1

rev is obtained associated with the bending mag-
netic field and the energy gain per turn.

The Figure 2 shows the difference between the conven-
tional method and the forward-difference one. The con-
dition of the J-PARC RCS is used, that is, the proton is
accelerated from 181 MeV to 3 GeV within 20 ms. The
thick line in the upper figure is the total energy difference,
dot line is the frequency difference, and the lower figure
shows the time difference on each turn. In these case, the
final energy becomes 3.0 GeV exactly in the case of the
forward-difference, though 2.9998 GeV in that of conven-
tional one.
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ACCELERATION VOLTAGE TRACKING

Let us consider “acceleration voltage tracking” as shown
in Fig. 3, where h = 2 is chosen for J-PARC RCS as an
example. The synchronous particle is accelerated by the
acceleration voltage with the frequency of f n:n+1

rf1 on the
phase φn:n+1

s1 at n-th turn. The suffix “1” shows the first
bucket. In this case, there is no assumption for f n:n+1

rf1 , this
means fn:n+1

rf1 �= hfrev is acceptable. The particle circu-
lates the ring with the revolution period Trev1 calculated
from eq.(12), then the particle sits on the phase φn+1:n+2

s1

at (n+1)-th turn.
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Figure 3: The schematic view of the relation between the
frequency change and the synchronous phase.

In order to satisfy this condition, f n+1:n+2
rf1 on (n+1)-

th turn should have a relation, which consists of f n:n+1
rf1 ,

fn:n+1
rf2 and T n:n+1

rev as

T n:n+1
rev1 =

1
2

1
fn:n+1
rf1

− φn:n+1
s1

2πfn:n+1
rf1

+
1

fn:n+1
rf2

+
1
2

1
fn+1:n+2
rf1

+
φn+1:n+2

s1

2πfn+1:n+2
rf1

. (14)

This equation shows the frequency of the acceleration volt-
age is defined so that its wave length should trace the
change of the synchronous phase turn by turn. In order to
calculate the (n+1)-th turn’s frequency f n+1:n+2

rf1 from the
n-th turn’s one, we have to consider about f n:n+1

rf2 for the
second bucket. We can calculate the revolution period for
the second bunch Trev2 from eq.(12), then we also obtain
the same kind of relation for f n+1:n+2

rf2 as

T n:n+1
rev2 =

1
2

1
fn:n+1
rf2

− φn:n+1
s2

2πfn:n+1
rf2

+
1

fn:n+1
rf1

+
1
2

1
fn+1:n+2
rf2

+
φn+1:n+2

s2

2πfn+1:n+2
rf2

. (15)

This equation includes f n+1:n+2
rf1 , so eq.(14) and (15)

should be solved simultaneously. The Figure 4 shows the
difference between f n+1:n+2

rf1 and hfrev turn by turn in the
case of the J-PARC RCS. Since the synchronous phase φs

increases until 15 ms, the frequency of the acceleration
voltage pattern becomes a little bit higher than hf rev.
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Figure 4: The frequency difference between f rf1 and hfrev.

SUMMARY

We investigate how to get the acceleration voltage pat-
tern which is based on the difference equation of the
longitudinal motion and the acceleration voltage tracking
scheme. By using this scheme, the more accurate longitu-
dinal particle tracking is performed, and it is very useful
when we simulate under the conditions of unexpected dif-
ference between the acceleration voltage pattern and the
bending magnetic field.
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