06 Instrumentation, Controls, Feedback & Operational Aspects

T21 Reliability, Operability

Paper Title Page
WEOCG02 Post-mortem Diagnostic for the Taiwan Light Source 1932
 
  • K. H. Hu, J. Chen, P. C. Chiu, K. T. Hsu, S. Y. Hsu, C. H. Kuo, D. Lee, C.-J. Wang, C. Y. Wu
    NSRRC, Hsinchu
 
  Analyzing the reasons of various trip events is essential to improve reliability of a synchrotron light source. To identify the causes of trip at Taiwan Light Source (TLS), various diagnostics tool were employed. These diagnostic tools can capture beam trip, interlock signals of superconducting RF system, waveform of the injection kickers, quench and interlock signals of the superconducting insertion device, and instability signals of the stored beam for post-mortem analysis. These diagnostics can be routine monitor signal and record beam trip event. Features of trip diagnostic tools are available now. System configuration experiences will be summarized in this report.  
slides icon Slides  
THPC142 The Operation Event Logging System of the SLS 3318
 
  • A. Luedeke
    PSI, Villigen
 
  Modern 3rd generation synchrotron light sources aim for 100% availability. No single beam interruption is acceptable and every distortion of operation should be investigated: What caused the interruption? Can it be avoided in the future? If it can't be avoided, how can the recovery be accelerated? An automated event recording system has been implemented at the Swiss Light Source (SLS) in order to simplify this investigations. The system identifies distortions of the user operation and records automatically type and duration of the event. All relevant information connected to the event, from control system archive data to shift protocols, is linked to the event and presented in web pages. Additional information can be added manually. Each event will be assigned to a failure cause and area. Means to filter the events are provided. The paper will describe the concept and implementation of the even logging system at the SLS and the experiences with the system.  
THPC143 A Wide Range Electrons, Photons, Neutrons Beam Facility 3321
 
  • B. Buonomo, G. Mazzitelli, F. Murtas, L. Quintieri
    INFN/LNF, Frascati (Roma)
  • P. Valente
    INFN-Roma, Roma
 
  The DAΦNE Beam Test Facility is in operation since the 2003 and has been continuously improved and upgraded in order to take into account the many different requests coming from the high energy and accelerator community. The facility was initially optimized to produce single electron and positron in the 25-750 MeV energy rage, manly for high energy detector calibration and testing; it can now provide beam in a wider range of intensity, up to 1010 electrons/pulse, typically needed for accelerator diagnostic tests. In the last two years the facility has also been modified in order to produce tagged photons, and the possibility to deliver tagged neutrons in the MeV energy range is under study. The main results obtained, the performance and the most significant characteristics of the facility diagnostics and operation are presented, as well as the users experience collected during these years of operation.  
THPC144 A Beam Quality Monitor for LHC Beams in the SPS 3324
 
  • G. Papotti
    CERN, Geneva
 
  The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. The highest level is related to machine protection, e.g. verifying SPS-LHC synchronization and global beam structure. If the specifications are not met, the beam is dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this paper the fast algorithms and their possible implementations are presented.  
THPC145 Reliability Analysis of the LHC Machine Protection System: Terminology and Methodology 3327
 
  • S. Wagner
    Swiss Federal Institute of Technology Zurich (ETH), Laboratory for Safety Analysis, Zurich
  • R. Schmidt, J. Wenninger
    CERN, Geneva
 
  The trade-off between LHC machine safety and beam availability is one of the main issues related to the LHC MPS. Several studies have addressed it for different subsystems. They are followed by a project aiming at the development of a methodology which combines agent-based modeling and fault-tree analysis thus allowing a global analysis of the entire MPS. During this project, the need for a clarification and specification of the terminology has become apparent. Besides involving basic terms like safety, reliability and availability, the analysis must take into account the implementation of common design principles such as redundancy, fault tolerance, 'fail-safe' and self-monitoring. These terms and in particular their interrelations easily cause confusion. Since the traceability of the analysis depends on a consistent understanding of the underlying terminology, a terminology frame is being compiled. The paper specifies the most relevant terms and their interrelations. General standard definitions are taken as basis for a specification related to the MPS and its analysis respectively. The developed analysis methodology building on this terminology frame is introduced.