Paper | Title | Page |
---|---|---|
THPP001 | Development of FFAG Electron Accelerator | 3372 |
|
||
Electron Beam (EB) Accelerators have been used in the many industrial fields to improve physical properties of the material. Examples are wire and cable industries, rubber tire industries, foam industries, etc. EB is also widely used for medical device sterilization as a popular tool. High power, high reliability, compactness and low cost are key requirements to get popularity of the technology and to open up its application fields. The paper will present FFAG electron accelerator to meet these requirements that NHV Corporation recently developed and some of the interesting performance such as beam extraction efficiency will be discussed in the paper. | ||
THPP002 | EMMA RF Cavity Design and Prototype Testing at Daresbury | 3374 |
|
||
At PAC07 we discussed the design of a prototype cavity to be used on EMMA*. EMMA is a prototype non-scalling FFAG. It will contain 19 RF cavities operating at 1.3 GHz with a baseline accelerating voltage of 120 kV. A prototype cavity has been manufactured by Niowave, Inc. and we will present a discussion of its RF and mechanical design. This cavity was put through low power tests, to determine frequency, tuning range, shunt impedance and Q of the cavity; and high power tests, to confirm power handling ability, when it arrived at Daresbury Laboratory this spring. The results of these tests were compared to the simulations and a bead pull was carried out to obtain the field profile. The cavities for EMMA are likely to be powered by IOTs, these will be used for the high power tests, which will demonstrate cavity operation to the required maximum of 180 kV.
*E. Wooldridge et al. "RF Cavity Development for FFAG Application on ERLP at Daresbury," Proceedings of PAC07, Albuquerque, NM (2007). |
||
THPP003 | RF System Design for the EMMA FFAG | 3377 |
|
||
In this report the RF system design for EMMA is described. The power source options, power supplies, waveguide distribution scheme and control system is discussed. The architecture necessary to meet the operation specifications requires a large degree of adjustment. To simplify commissioning and enhance the versatility of the machine a complex RF system is desired. This report details the RF "knobs" included to meet this. | ||
THPP004 | EMMA - the World's First Non-scaling FFAG | 3380 |
|
||
EMMA - the Electron Model of Many Applications - is to be built at the STFC Daresbury Laboratory in the UK and will be the first non-scaling FFAG ever constructed. EMMA will be used to demonstrate the principle of this type of accelerator and study their features in detail. The design of the machine and its hardware components are now far advanced and construction is due for completion in summer 2009. | ||
THPP005 | Orbit Distortion and its Correction in a Non-scaling FFAG | 3383 |
|
||
The wide variation in betatron tune over a rapid acceleration time presents particular difficulties in orbit correction in a non-scaling FFAG. Due to the fact that the phase advance between an error source and the corrector magnets varies during acceleration, and assuming that the corrector magnets' strengths must be constant during the short acceleration period, it is clear that conventional harmonic correction is ineffective. We propose a method to determine the magnet and BPM misalignments in a non-scaling FFAG. By running the beam at fixed energy over many turns, and assuming no other error sources exist, the BPM measurements allow the misalignments to be calculated (assuming that there are as many BPMs as error sources). We show that it is also possible to calculate the BPM misalignment error if the beam is run at two fixed energies. This is due to a characteristic property of non-scaling FFAGs - the variation of the phase shift, and hence the response of the BPM measurements to magnet misalignments, with momentum. Having estimated the magnet misalignments, a local correction is made and a tracking study carried out to calculate the reduction in orbit distortion that results. | ||
THPP006 | Injection and Extraction for the EMMA NS-FFAG | 3386 |
|
||
EMMA (Electron Machine with Many Applications) is a prototype non-scaling electron FFAG to be hosted at Daresbury Laboratory. NS-FFAGs related to EMMA have an unprecedented potential for medical accelerators for carbon and proton hadron therapy. It also represents a possible active element for an ADSR (Accelerator Driven Sub-critical Reactor). This paper will summarize the design of the extraction and injection transfer lines of the NS-FFAG. In order to operate EMMA, the Energy Recovery Linac Prototype (ERLP) shall be used as injector and the energy will range from 10 to 20 MeV. Because this would be the first non-scaling FFAG, it is important that as many of the bunch properties are studied as feasible, both at injection and at extraction. To do this, a complex injection line was designed consisting of a dogleg to extract the beam from ERLP, a matching section, a tomography section and some additional dipoles and quadrupoles to transport the beam to the entrance of EMMA. Further, an equivalent tomography module was placed in the extraction line together with several other diagnostic devices including the possibility of using a transverse deflecting cavity. | ||
THPP007 | Six-sector FFAG Ring to Demonstrate Bunch Rotation for PRISM | 3389 |
|
||
A monochromatic muon beam is one of the most important requirements to improve a sensitivity of mu-e conversion experiments. In the PRISM project, which searches for mu-e conversion at a sensitivity of BR~10-18, makes such muon beams by using a bunch rotation technique in an FFAG ring. To demonstrate the bunch rotation, a FFAG ring has been constructed in RCNP, Osaka. The ring has six FFAG magnets and one RF cavity. Alpha particles from a radioactive isotope 241Am will circulate in the ring for the demonstration of bunch rotation. | ||
THPP009 | Injection and Extraction Orbits and Twiss Parameters for the EMMA Ring | 3395 |
|
||
Using the FFEMMAG code, the injection and extraction orbits for the EMMA ring at a variety of injection and extraction energies together with the Twiss parameters to be used for matching have been calculated. The orbits include two kickers together with a septum at both injection and extraction. The FFEMMAG code has been used in conjunction with several scripts so as to be able to scan the parameter space of the two kicker strengths for a section of the EMMA ring. The results confirm the choice of magnet and vacuum pipe apertures as being adequate to operate EMMA from 10 to 20 MeV. | ||
THPP011 | Beam Acceleration Studies of Proton NS-FFAG | 3398 |
|
||
The NS-FFAG is a novel idea of a fixed field accelerator which has advantages in flexible design and machine operation for fixed field accelerator. However, due to the large tune variation with energy, fast acceleration is a key issue to circumvent the resonance problem in a linear NS-FFAG. At the moment, there is no numerical study of how fast it needs be. In this paper, using a lattice of a NS-FFAG for particle therapy, results of tracking study including acceleration rate, positioning tolerance are presented. | ||
THPP012 | Beam Injection Issues of FFAG for Particle Therapy | 3401 |
|
||
Spot scanning irradiation is a next generation treatment scheme of particle therapy. The pulsed beam of FFAG accelerator is well fitted to the treatment. In order to form a uniform dose distribution in the target volume, intensity modulation is a requirement in spot scanning and it requires special consideration in injection in order to realize short time treatment using the pulsed beam of the FFAG. In this paper, injection related issues of NS-FFAG are discussed from the point of particle therapy, especially for spot scanning. | ||
THPP071 | Construction of Six-sector FFAG Ring for Muon Phase Rotation | 3524 |
|
||
PRISM is a next-generation of muon source which provides high purity, high intense and high brightness beam. In PRISM, a PRISM-FFAG is one of key section which make a muon beam narrow energy width by using phase rotation technique. To demonstrate the phase rotation, a six-cell FFAG ring has been constructed; the ring consists of full size of scaling-FFAG magnets and a high gradient rf cavity. The experiment is achieved by injecting alpha particles from a radioisotope source as a beam. Construction of the ring has been started from September, 2007; beam duct has been designed and installed, the six FFAG magnets has been aligned, etc. In this paper, we will present the design of the ring and the construction (alignment, etc) from engineering point of view. |