A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zholents, A.

Paper Title Page
TUPP032 Trajectory Jitter and Single Bunch Beam Break Up Instability 1607
 
  • S. Di Mitri, P. Craievich
    ELETTRA, Basovizza, Trieste
  • M. Borland
    ANL, Argonne, Illinois
  • A. Zholents
    LBNL, Berkeley, California
 
  This paper addresses stability issues related to control of the beam break up (BBU) instability in the FERMI@Elettra linac using local trajectory bumps. Analytical study and simulations using the Elegant code are presented. Three different parameters have been used to characterize the BBU, i.e. the projected emittance, the bunch head-to-tail deviation, and the Courant-Snyder invariant for the slice centroid. It is shown that shot-to-shot trajectory jitter in the injector affects the efficiency of the control of the BBU.  
THPC010 Trajectory Correction in the Fermi@Elettra Linac 2993
 
  • S. Di Mitri
    ELETTRA, Basovizza, Trieste
  • A. Zholents
    LBNL, Berkeley, California
 
  The effect of the static magnetic field errors and misalignment of the magnetic elements and linac modules on the beam trajectory in the Fermi@elettra linac [1] has been studied. Analytical description has been used to guide simulations of the trajectory correction using three different techniques. A control over the residual R56 transfer matrix element along the linac lattice has been applied. The importance of the linac structural transverse wake field for a reliable prediction of the bunch centroid dynamics has been demonstrated. Transverse deviations of bunch slices along the electron bunch induced by the wake fields have been calculated.

[1] S. Di Mitri, ST/M–07/01 (2007)