A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Yun, S. P.

Paper Title Page
THPP028 Beam Tests of the PEFP 20 MeV Accelerator 3434
 
  • H.-J. Kwon, Y.-S. Cho, I.-S. Hong, J.-H. Jang, D. I. Kim, H. S. Kim, B.-S. Park, K. T. Seol, Y.-G. Song, S. P. Yun
    KAERI, Daejon
 
  PEFP (Proton Engineering Frontier Project) 20 MeV proton accelerator has been installed and tested at KAERI (Korea Atomic Energy Research Institute) site. After the radiation license was issued, some parts were modified to increase a beam current above 1mA. Both an ion source and a LEBT (Low Energy Beam Transport) were modified for better matching of the beam into the 3 MeV RFQ. The field profile of the RFQ was measured to check the dipole field effect. In addition, control mechanisms to improve the RF properties of 20 MeV DTL were newly adopted. In this paper, the modifications of the 20MeV accelerator are summarized and the test results are presented.  
THPP093 Conceptual Design of the PEFP Beam Line 3581
 
  • I.-S. Hong, Y.-S. Cho, B. H. Choi, B. Chung, J.-H. Jang, H. S. Kim, K. R. Kim, H.-J. Kwon, B.-S. Park, S. P. Yun
    KAERI, Daejon
 
  In the Proton Engineering Frontier Project (PEFP), 20MeV and 100MeV proton beams from a 100MeV proton liner accelerator will be supplied to users for proton beam applications. Switch magnets will share the beam to three directions, two fixed beam lines and one AC magnet. The two fixed beam lines will be used for isotope production and power semiconductor production. An AC magnet will distribute the beams to three targets simultaneously. To provide flexibilities of irradiation conditions for users from many application fields, we designed beam lines to the targets with wide or focused, external or in-vacuum, and horizontal or vertical beams. As far as possible we designed the simple beam lines to reduce the construction cost. The details of the beam line conceptual design will be reported.