A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Wolski, A.

Paper Title Page
MOPP051 Effect of Fill Patterns on Extraction Jitter in Damping Rings 664
 
  • K. M. Hock, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
  Injection of fresh bunches into a storage ring can induce jitter on stored bunches, as a result of wake field coupling. This transient effect can lead to an undesirable increase in the emittance of stored bunches; in the case of linear collider damping rings, there can also be jitter in the extracted bunches, which can adversely affect performance. We consider how the wake field coupling in a storage ring depends on the fill pattern, and, for the ILC damping rings, present the results of simulations of the transverse dynamics with a resistive wall wake field for a number of different fill patterns. We draw correlations between the extraction jitter and various machine parameters, including the fill pattern.  
MOPP056 Beam Coupling Impedance in the ILC Damping Rings 670
 
  • M. Korostelev, O. B. Malyshev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • A. F. Grant, J. Lucas
    STFC/DL, Daresbury, Warrington, Cheshire
 
  The ILC damping rings have stringent specifications for beam quality and stability. To avoid instabilities, the various components in the vacuum chamber will need to be carefully designed to minimize the longitudinal and transverse wake fields. We present the results of impedance calculations for various components that are expected to make a significant contribution to the overall machine impedance.  
MOPP067 Coupling Correction Simulations for the ILC Damping Rings 700
 
  • K. G. Panagiotidis, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
 
  The ILC damping rings are specified to operate with a vertical emittance of 2 pm. To achieve this challenging goal, an effective diagnostic and correction system will be needed; however, BPMs add impedance to the ring, and diagnostics and correctors add complexity and cost. It is therefore desirable to understand how the final achievable emittance depends on the numbers, locations, and performance of the BPMs and correctors, and to determine the minimum number of these components required. We present the results of simulations for the damping rings, indicating the effectiveness of coupling correction for different design scenarios of the diagnostics and correction systems.  
MOPP079 Studies on the Role of a Photon Collimator for the ILC Positron Source 733
 
  • L. Zang
    Cockcroft Institute, Warrington, Cheshire
  • I. R. Bailey, A. Wolski, L. Zang
    Liverpool University, Science Faculty, Liverpool
 
  Use of a helical undulator in the ILC positron source provides the possibility of producing a polarised positron beam. The degree of polarisation of the positrons depends upon the polarisation of the photons produced from the undulator, where the polarisation depends on the photon energy and production angle. We calculate these quantities for one design of the helical undulator for the ILC, investigate approximations commonly made in calculating the undulator photon spectrum and explore the role of of a photon collimator in determining the positron polarisation.