A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Williams, L. R.

Paper Title Page
WEPD001 The Quality Control of the LHC Continuous Cryostat Interconnections 2398
 
  • F. F. Bertinelli, D. Bozzini, P. Cruikshank, P. Fessia, W. Maan, A. Poncet, S. Russenschuck, F. Savary, Z. Sulek, J.-P. G. Tock, D. Tommasini, L. R. Williams
    CERN, Geneva
  • P. B. Borowiec, A. Kotarba, S. Olek
    HNINP, Kraków
  • A. Grimaud
    ALL43, Saint-Genis-Pouilly
  • L. Vaudaux
    IEG, St-Genis-Pouilly
 
  The interconnections between the Large Hadron Collider (LHC) magnets have required some 40 000 TIG welded joints and 65 000 electrical splices. At the level of single joints and splices, non-destructive techniques find limited application: quality control is based on the qualification of the process and of operators, on the recording of production parameters, and on production samples. Visual inspection and process audits were the main techniques used. At the level of an extended chain of joints and splices - from a 53.5 m half-cell to a complete 2.7 km sector - quality control is based on vacuum leak tests, electrical tests and RF microwave reflectometry that progressively validated the work performed. Subsequent sector pressure tests, cryogenic circuits flushing with high pressure helium and cool-downs revealed a few unseen or new defects. The nature of defects is analyzed and classified according to their origin. Methods for defect localization are described. This paper presents an overview of the quality control techniques used and critically evaluates their effectiveness in progressively identifying defects, seeking lessons applicable to similar large, complex projects.  
WEPD026 The Special LHC Interconnections: Technologies, Organization and Quality Control 2464
 
  • J.-P. G. Tock, F. F. Bertinelli, D. Bozzini, P. Cruikshank, O. Desebe, M. F. Felip-Hernando, C. Garion, A. Jacquemod, N. Kos, F. Laurent, A. Poncet, S. Russenschuck, I. Slits, L. R. Williams
    CERN, Geneva
  • L. Hajduk
    HNINP, Krakow
  • L. Vaudaux
    IEG, St-Genis-Pouilly
 
  In addition to the standard interconnections of the continuous cryostat of the Large Hadron Collider (LHC), there exists a variety of special ones related to specific components and assemblies, such as cryomagnets of the insertion regions, electrical feedboxes and superconducting links. Though they are less numerous, their specificities created many additional interconnection types, requiring a larger variety of assembly operations and quality control techniques, keeping very high standards of quality. Considerable flexibility and adaptability from all the teams involved (CERN staff, collaborating institutes, contractors) were the key points to ensure the success of this task. This paper first describes the special interconnections and presents the employed technologies which are adapted from the standard work. Then, the organization adopted for this non-repetitive work is described. Examples of non-conformities that were resolved are also discussed. Figures of merit in terms of quality and productivity are given and compared with standard interconnections work.