A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Williams, D. C.

Paper Title Page
MOPP110 The SNS Resonance Control Cooling System Control Valve Upgrade Performance 814
 
  • D. C. Williams, J. P. Schubert, J. Y. Tang
    ORNL, Oak Ridge, Tennessee
 
  The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other is used to bypass water to a heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New air actuator control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for two valve configurations.  
TUPC125 Status of the Spallation Neutron Source Superconducting RF Facility 1362
 
  • F. Casagrande, S. Assadi, M. T. Crofford, W. R. DeVan, X. Geng, T. W. Hardek, S. Henderson, M. P. Howell, Y. W. Kang, J. Mammosser, W. C. Stone, D. Stout, W. H. Strong, D. C. Williams, P. A. Wright
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source (SNS) project was completed without on-site superconducting RF (SRF) facilities. Installation of the infrastructure necessary to maintain and repair the superconducting Linac and to support power upgrade research and development (R&D) is well underway. Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is now complete. These systems were recently operated satisfactorily to test a cryomodule that had been removed from the accelerator and repaired in the cleanroom. A horizontal cryostat has been fabricated and will be soon commissioned. Equipment for cryomodule assembly and disassembly has been installed and used for cryomodule disassembly. Cavity processing equipment, specifically an ultra-pure water system, high pressure rinse system, and vertical test area is being designed and installed. This effort is providing both high-power test capability as well as long-term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF test facility.