A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

White, G. R.

Paper Title Page
MOPP039 Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System 634
 
  • G. R. White, S. Molloy, M. Woodley
    SLAC, Menlo Park, California
 
  Using a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalised vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including “static” (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within ~10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks.  
TUPP016 A Flight Simulator for ATF2 - A Mechanism for International Collaboration in the Writing and Deployment of Online Beam Dynamics Algorithms 1562
 
  • G. R. White, S. Molloy, A. Seryi
    SLAC, Menlo Park, California
  • P. Bambade, Y. Renier
    LAL, Orsay
  • S. Kuroda
    KEK, Ibaraki
  • D. Schulte, R. Tomas
    CERN, Geneva
 
  The goals of ATF2 are to test a novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. The newly designed extraction line and final focus system will be used to produce a 37nm vertical waist from an extracted beam from the ATF ring of ~30nm vertical normalised emittance, and to stabilise it at the IP-waist to the ~2nm level. Static and dynamic tolerances on all accelerator components are very tight; the achievement of the ATF2 goals is reliant on the application of multiple high-level beam dynamics algorithms to align and tune the electron beam in the extraction line and final focus system. Much algorithmic development work has been done in Japan and by colleagues in collaborating nations in North America and Europe. We describe here development work towards realising a 'flight simulator' environment for the shared development and implementation of beam dynamics code. This software exists as a 'middle-layer' between the lower-level control systems (EPICS and V-SYSTEM) and the multiple higher-level beam dynamics modeling tools in use by the three regions (SAD, Lucretia and PLACET).  
MOPP003 Study of Abnormal Vertical Emittance Growth in ATF Extraction Line 553
 
  • M. Alabau, A. Faus-Golfe
    IFIC (CSIC-UV), Valencia
  • M. Alabau, P. Bambade, J. Brossard, G. Le Meur, C. Rimbault, F. Touze
    LAL, Orsay
  • D. Angal-Kalinin, J. K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby, A. Scarfe
    UMAN, Manchester
  • S. Kuroda
    KEK, Ibaraki
  • G. R. White, M. Woodley
    SLAC, Menlo Park, California
  • F. Zimmermann
    CERN, Geneva
 
  Since several years, the vertical emittance measured in the Extraction Line (EXT) of the Accelerator Test Facility (ATF) at KEK, that will transport the electron beam from the ATF Damping Ring (DR) to the future ATF2 Final Focus beam line, is significantly larger than the emittance measured in the DR itself, and there are indications that it grows rapidly with increasing beam intensity. This long-standing problem has motivated studies of possible sources of this anomalous emittance growth. One possible contribution is non-linear magnetic fields in the extraction region experienced by the beam while passing off-axis through magnets of the DR during the extraction process. In this paper, simulations of the emittance growth are presented and compared to observations. These simulations include the effects of predicted non-linear field errors in the shared DR magnets and orbit displacements from the reference orbit in the extraction region. Results of recent measurements using closed orbit bumps to probe the relation between the extraction trajectory and the anomalous emittance growth are also presented.  
THPP127 ATF2 High Availability Power Supplies 3658
 
  • B. Lam, P. Bellomo, D. J. MacNair, G. R. White, A. C. de Lira
    SLAC, Menlo Park, California
  • V. R. Rossi
    O. C.E. M. S.p. A., S. Giorgio di Piano
 
  ATF2 is an accelerator test facility modeled after the final focus beamline envisioned for the ILC. By the end of 2008, KEK plans to commission the ATF2. SLAC and OCEM collaborated on the design of 38 power systems for beamline magnets. The systems range in output power from 1.5 kW to 6 kW. Since high availability is essential for the success of the ILC, Collaborators employed an N+1 modular approach, allowing for redundancy and the use of a single power module rating. This approach increases the availability of the power systems. Common power modules reduces inventory and eases maintenance. Current stability requirements are as tight as 10 ppm. A novel, SLAC-designed 20-bit Ethernet Power Supply Controller provides the required precision current regulation. In this paper, Collaborators present the power system design, the expected reliability, fault immunity features, and the methods for satisfying the control and monitoring challenges. Presented are test results and the status of the power systems.