A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Weigel, R.

Paper Title Page
TUPP023 Direct Detection of the Electron Cloud at ANKA 1580
 
  • S. Casalbuoni, A. W. Grau, M. Hagelstein, A.-S. Müller
    FZK, Karlsruhe
  • U. Iriso
    ALBA, Bellaterra
  • E. M. Mashkina
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
  Low energy electrons generated by the interaction of high energy particles with the beam pipe surface can be detrimental for accelerators performances increasing the vacuum pressure, the heat load and eventually producing beam instabilities. The low energy electrons accumulating in the beam pipe are often referred to as electron cloud. In this presentation we report on the direct evidence of the electron cloud in the electron storage ring of the synchrotron light source ANKA (ANgstrom source KArlsruhe).  
WEPC103 Design of a Cold Vacuum Chamber for Diagnostics 2240
 
  • S. Casalbuoni, T. Baumbach, A. W. Grau, M. Hagelstein, R. Rossmanith
    FZK, Karlsruhe
  • V. Baglin, B. Jenninger
    CERN, Geneva
  • R. Cimino
    INFN/LNF, Frascati (Roma)
  • M. P. Cox
    Diamond, Oxfordshire
  • E. M. Mashkina
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • E. J. Wallén
    MAX-lab, Lund
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
  Preliminary studies performed with the cold bore superconducting undulator installed in the ANKA storage ring suggest that the beam heat load is mainly due to the electron wall bombardment. Low energy electrons (few eV) are accelerated by the electric field of the beam to the wall of the vacuum chamber, induce non-thermal outgassing from the cryogenic surface and heat the undulator. In this contribution we report on the design of a cold vacuum chamber for diagnostics to be installed in the ANKA (ANgstrom source KArlsruhe) storage ring and possibly in third generation light sources. The diagnostics implemented are:
  1. retarding field analyzers to measure the electron energy and flux,
  2. temperature sensors to measure the total heat load,
  3. pressure gauges,
  4. and a mass spectrometer to measure the gas content.
The aim of this device is to gain a deeper understanding on the heat load mechanisms to a cold vacuum chamber in a storage ring and find effective remedies. The outcome of the study is of relevance for the design and operation of cold bore superconducting insertion devices in synchrotron light sources.