A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Wang, J. G.

Paper Title Page
WEPC163 Modification of a Spare Septum Magnet for SNS Ring Injection Dump Beam Line 2389
 
  • J. G. Wang
    ORNL, Oak Ridge, Tennessee
 
  The SNS ring injection dump septum magnet has been suffering the heaviest beam losses since the ring commissioning. These beam losses are caused by a number of design and operation problems such as incorrect location of one chicane dipole, incorrect chicane dipole setting, and inadequate aperture of the injection dump septum. We have modified a spare septum by increasing its vertical and horizontal aperture and by adding specially designed z-bumps for one of the waste beams. This paper reports the detailed modification results, including 3D particle trajectory calculations and experimental measurements.  
THPC015 Computational Beam Dynamics Studies for Improving the Ring Injection and Extraction Systems in SNS 3008
 
  • J. A. Holmes, S. M. Cousineau, M. A. Plum, J. G. Wang
    ORNL, Oak Ridge, Tennessee
 
  The ring injection and extraction systems must function as designed in order for the Spallation Neutron Source (SNS) to achieve its specified performance. In commissioning and early operations we have encountered problems that have been traced to these systems. We experienced high beam losses in and around the injection dump, the rectification of which has necessitated significant study and development by a multidisciplinary team. The results include a number of enhancements of existing features and the addition of new elements and diagnostics. The problem in the extraction region stems from tilted beam distributions observed in the ring-to-target beam transport line (RTBT) and on the target, thus complicating the control of the beam-on-target distribution. This indicates the inadvertant introdution of x-y beam coupling somewhere upstream of the RTBT. The present paper describes computational studies, using the ORBIT Code, addressed at the detailed understanding and solution of these problems.