A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

vom Stein, P.

Paper Title Page
MOPD001 SRF Capabilities at ACCEL in view of ILC/XFEL 445
 
  • M. Pekeler, S. Bauer, M. Peiniger, H. Vogel, P. vom Stein
    ACCEL, Bergisch Gladbach
 
  In the last decade, ACCEL has manufactured a variety of prototype SRF cavities but also more than 100 TESLA shape 1.3 GHz 9 cell cavities and more than 100 SNS 805 MHz 6-cell cavities. For the ILC R&D at FNAL, we have delivered 12 ILC 9-cell 1.3 GHz cavities and are currently producing 12 additional such cavities. ACCEL is prepared for the industrial production of cavities, couplers and also the module assembly for the XFEL. We have internally evaluated the needs and costs for an in house production of the XFEL cavities. Within an industrial study we have analysed the coupler production for the XFEL, developed a series production adapted XFEL coupler design based on the TTF-III coupler and determined the costs for the series production. ACCEL participated also in a module assembly study and investigated the costs for manpower and infrastructure to manufacture the needed modules for the XFEL within the forseen time of three years. Last year ACCEL was contracted by DESY to built up an industrial plant for electropolishing 1.3 GHz 9 cell cavities. This plant is in routine operation since November 2007 and we have sucessfully electropolished the first series of 10 cavities for DESY.  
TUPP160 Superconducting RF Activities at ACCEL Instruments 1884
 
  • M. Pekeler, S. Bauer, P. vom Stein
    ACCEL, Bergisch Gladbach
 
  We report on highlights of SRF activities at ACCEL Instruments during the last few years. For example the development of a new hydrofloric and sulphoric acid free electropolishing method for niobium cavities and the construction and installation of a new standard electropolishing plant for 9-cell 1.3 GHz cavities. In addition we have further developed our design for 500 MHz superconducting RF modules for light sources and delivered three such accelerator modules for Shanghai Ligth Source. For SOLEIL we manufactured a 350 MHz twin cavity accelerator module using the technology of sputtering niobium onto copper.  
MOPP141 Commissioning of the ERLP SRF Systems at Daresbury Laboratory 889
 
  • P. A. McIntosh, R. Bate, R. K. Buckley, S. R. Buckley, P. A. Corlett, A. J. Moss, J. F. Orrett, S. M. Pattalwar, A. E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • F. G. Gabriel
    FZD, Dresden
  • A. R. Goulden
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
  • P. vom Stein
    ACCEL, Bergisch Gladbach
 
  The Energy Recovery Linac Prototype (ERLP) has been installed at Daresbury Laboratory and its baseline commissioning completed. The SRF systems for ERLP comprise two 9-cell, 1.3 GHz accelerating cavities in the injector (or Booster) cryomodule, which provide a nominal energy gain of 8 MeV for the injected 350 keV beam from the photo-injector. The beam is then accelerated in an identical two cavity cryomodule in the energy recovery main Linac, giving a final ERLP energy of 35 MeV. Each SRF accelerating cavity is powered by commercially available Inductive Output Tubes (IOTs) and the analog LLRF control system is identical to that employed on the ELBE facility at FZD Rossendorf. This paper details the commissioning experience gained for these systems and highlights the ultimate performance achieved.  
THPP038 Phase 1 Commissioning Status of the 40 MeV Proton/Deuteron Accelerator SARAF 3452
 
  • C. Piel, K. Dunkel, F. Kremer, M. Pekeler, P. vom Stein
    ACCEL, Bergisch Gladbach
  • D. Berkovits, I. Mardor
    Soreq NRC, Yavne
 
  Since January 2007 all accelerator equipment of the Phase 1 for the 40MeV Proton/Deuteron Accelerator is at the SARAF site and installed for the commissioning. The target of Phase 1 is to get the ECR ion source and RFQ into operation and to perform all relevant test with the cryo module housing 6 super conducting half wave resonators, to show that the design values of the system can be reached. Based on those results the Phase 2 shall start, to reach the final energy of 40MeV with up to 2mA of Protons and Deuterons. The ECR source is in routine operation since June 2006, the RFQ already have been operated with Protons and currently is under characterisation. After the characterisation has been finalised it is anticipated to move the cryo module in the beam line and to perform further beam characterisation. The entire beam characterisation is closely followed by beam dynamics simulations. Recent results of the commissioning will be presented and comparisons made between measurements and beam dynamics calculations.