A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tsai, Z.-D.

Paper Title Page
TUPC054 Pulse-by-pulse Photon Beam Monitor with Microstripline Structure in NSRRC 1176
 
  • C. K. Kuan, C. L. Chen, J.-R. Chen, G.-Y. Hsiung, I. C. Sheng, Z.-D. Tsai, D.-J. Wang
    NSRRC, Hsinchu
  • H. Aoyagi, H. Kitamura, S. Takahashi
    JASRI/SPring-8, Hyogo-ken
 
  In order to diagnostic pulse-by-pulse beam movement of photon beam, NSRRC(Taiwan) and SPring-8 (Japan) have worked together to develop a front end beam monitor with microstripline structure, which is designed to have specific impedance of 50 ohm. The detector head is composed of a metal line (copper), ceramic plates (aluminum nitride) and a cooling base (copper tungsten). The metal line functions as a photocathode. The metal line is directly connected to SMA feed-through connectors to have fast response time. The detector head has been fabricated in SPring-8, and mounted on the monitor chamber and installed in NSRRC Superconducting Wiggler (SW) front end. The beam monitor can be used to examine not only pulse-by-pulse photon beam, but also the storage ring intensity and the pulse timing. Unique feature of the monitor is to produce unipolar short pulses. The design, fabrication and the measurement will be presented in this paper.  
TUPC127 Utility Design for the 3GeV TPS Electron Storage Ring 1365
 
  • J.-C. Chang, Y.-C. Lin, Y.-H. Liu, Z.-D. Tsai
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
 
  Having been running the Taiwan Light Source (TLS) for fourteen years since its opening in 1993, National Synchrotron Radiation Research Center (NSRRC), Taiwan, has been approved to build a photon source (TPS) last year. TPS is preliminarily designed with 3.0 GeV in energy, 518.4m in circumference and 24 Double-Bend Achromat (DBA). The utility system, including the electrical power, cooling water and air conditioning system of the TPS were designed to meet requirements of high reliability and stability. Because the power consumption of the TPS is estimated about three times that of TLS, energy saving is another consideration. This paper therefore discusses utility design concepts and presents partial design results, including capacity requirements, equipment and piping layouts.  
TUPC128 Air Temperature Analysis and Control Improvement for the EPU 5.6 at TLS 1368
 
  • J.-C. Chang, Y.-C. Chung, C.-Y. Liu, Z.-D. Tsai
    NSRRC, Hsinchu
 
  This paper presents the air temperature analysis and control improvement for area of the elliptically polarizing undulator EPU 5.6 in the Taiwan Light Source (TLS). To enhance uniformity of ambient air temperature, we applied mini environmental controls and installed five cross flow fans in this area. Eight temperature sensors were installed around the EPU to monitor temperature variation. We also simulated the flow field and temperature distribution in this area by using a computational fluid dynamics (CFD) code. The simulation results were validated by comparing to measured data. The temperature variation along time and spatial temperature differences were controlled within 0.1 degree C and 0.5 degree C, respectively.  
TUPC132 The Strategy between Optimal Control and Energy Saving about Utility System Operation 1380
 
  • Z.-D. Tsai, J.-C. Chang
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
 
  Previously, the Taiwan Light Source (TLS) at NSRRC has proven the good beam line quality depend on the utility system stability. Subsequently, several studies including the temperature control of cooling water and air conditioner was in progress for improving the system stability. Due to the importance of energy saving issue, the heavy power consumption of utility system are also discussed and intended to reduce extensively. The paper addresses some experience between optimal control and energy saving about operation of utility system in TLS. This provides a strategy between stability control and power reduction, including the flow balance, inverter usage, facility operation, control philosophy and so on.  
TUPP162 High Heat Load Components in TPS Front Ends 1890
 
  • A. Sheng, J.-R. Chen, C. K. Kuan, Z.-D. Tsai
    NSRRC, Hsinchu
 
  National Synchrotron Radiation Research Center (NSRRC) will build a new synchrotron accelerator (TPS, Taiwan Photon Source) with a great heat-load power. Various IDs have been proposed. For instance, at 3.3 GeV, 350 mA, superconductivity wiggler SW4.8 may generate 5.8mrad wide, 57 kW/mrad2 power whereas undulator CU1.8 will be 0.7 mrad, 148 kW/mrad2. The function of the fixed mask in TPS front ends not only to protect the downstream vacuum from being hit by the radiation during miss-steering, but also shadow the unwanted power. More than one fixed masks are introduced in some high heat load front ends. High conductivity, high thermomechaical strength GlidCop® is used; design and thermomechanical analysis is also presented in this paper.  
THPP143 Vacuum Design of the TPS Relates to the Beam Effects 3699
 
  • G.-Y. Hsiung, C. K. Chan, C.-C. Chang, H. P. Hsueh, Z.-D. Tsai
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
 
  The concept of the vacuum design for the 3 GeV Taiwan Photon Source (TPS) considers several points of view which relates to the beam effects. The vacuum design of the low outgassing rate and the effective pumping configurations to obtain the lowest average pressure in the electron storage ring is to obtain the longer beam life time and the least of the ion trapping effect and the consequent problem of beam ion instability. The inner structure of the beam ducts provides the lower impedance which reduces the problems of the collective beam instability and the heating dissipation and damage to the vacuum components. The thin wall of the beam ducts and the bellows are designed for the sextupoles that offers the function of fast feedback orbit correction of the beam. The final performance of the third generation light source with low emittance will rely on the original design of vacuum systems for the electron beam. The design philosophy of the vacuum systems for the TPS will be described.