Paper | Title | Page |
---|---|---|
TUPP139 | Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications | 1845 |
|
||
We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials. | ||
TUOBG03 | Electron Beam Dynamics in the Long-pulse, High-current DARHT-II Linear Induction Accelerator | 968 |
|
||
We are now operating the full-scale DARHT-II linear induction accelerator (LIA) at its rated energy, accelerating 2-kA electron beams to more than 17 MeV. The injector produces a beam pulse with a full-width at half maximum (FWHM) greater than 2.5 microseconds, and a ~0.5 microsecond rise time. This long risetime is deliberately scraped off in a special beam-head cleanup zone (BCUZ) before entering the 68-cell main accelerator. The accelerated electron beam pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. We will discuss the tuning of the injector, BCUZ, and accelerator; and we will present data for the resulting beam transport and dynamics. We will also present beam stability data, which we will relate to previous stability experiments at lower current and energy*.
*Carl Ekdahl et al. "Long-pulse beam stability experiments on the DARHT-II linear induction accelerator," IEEE Trans. Plasma. Sci. Vol. 34, 2006, pp. 460-466. |
||
![]() |
Slides |