A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tiede, R.

Paper Title Page
WEPP079 Beam Dynamics Layout and Loss Studies for the FAIR P-Injector 2701
 
  • G. Clemente, L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  • U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main
 
  The development of coupled CH-DTL cavities represents a major achievement in the development of the 325 MHz, 70 MeV FAIR P-Injector. This coupled-cavity solution has important consequencies on the beam dynamics design which has to be adapted to this new kind of resonator. In combination with the KONUS beam dynamics, this solution allows to achieve all the requirements of the FAIR project in terms of beam intensity and quality reducing at the same time the number of focusing elements along the machine. A layout based on 6 CH coupled modules is presented and compared with a solution composed of three coupled modules up to 35 MeV followed by three long single resonators up to the energy of 70 MeV. A redesigned 35 MeV intertank section became necessary to avoid beam losses and emittance growth. Finally, the effect of random mistakes such as quadrupole misalignments and phase as well as voltage setting errors have been investigated to determine the tolerances of mechanical construction and rf controls during operation.  
THPC112 KONUS Dynamics and H-mode DTL Structures for EUROTRANS and IFMIF 3239
 
  • C. Zhang, M. Busch, H. Klein, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main
 
  During the last two decades, the combination of the KONUS beam dynamics and H-mode DTL structures has been developed as an efficient solution for accelerating low- and medium-energy proton and ion beams. EUROTRANS is a EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator Driven System. IFMIF is a planned International Fusion Material Irradiation Facility to test materials for fusion reactors. For the driver linacs of both projects, two H-DTLs have been proposed to cover the energy ranges of 3–17MeV and 5–40MeV, respectively. The beam dynamics designs as well as the error studies of the H-DTLs are presented in this paper.  
THPP080 A Superconducting CH-Linac for IFMIF 3548
 
  • H. Podlech, A. Bechtold, M. Busch, F. Dziuba, H. Klein, H. Liebermann, U. Ratzinger, R. Tiede, C. Zhang
    IAP, Frankfurt am Main
 
  The IFMIF accelerator which has to provide a 40 MeV 250 mA Deuteron beam requires a duty cycle of 100%. The IAP Frankfurt has proposed 175 MHz H-type drift tube linac consisting of an IH-cavity and a chain of superconducting CH-cavities. A superconducting CH-prototype cavity has been tested very successfully and reached effective gradients of 7 MV/m. Two rf power couplers are necessary to feed one CH-cavity. The maximum rf power per cavity is approximately 500 kW. As amplifiers the originally foreseen 1 MW tubes or 300 kW tubes can be used. The focusing scheme in the CH-linac is based on superconducting solenoids. Beam dynamics simulations have been performed with an error analysis using the LORASR code based on the KONUS dynamics. An updated and improved linac design will be presented. A contribution of IAP for the EVEDA phase could consists of the construction and the test of the room temperature IH-cavity and the first complete CH cryo-module. A study together with industry has been already performed regarding the production process and the system integration of auxiliary equipment like couplers and tuner.