A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Thorndahl, L.

Paper Title Page
MOPP090 Incorporating RF into a Muon Helical Cooling Channel 760
 
  • S. A. Kahn, M. Alsharo'a, R. P. Johnson
    Muons, Inc, Batavia
  • D. R. Broemmelsiek, A. Jansson, V. Kashikhin, V. S. Kashikhin, A. L. Klebaner, G. F. Kuznetsov, G. V. Romanov, A. V. Shemyakin, D. Sun, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • L. Thorndahl
    CERN, Geneva
 
  A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoidal, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional cooling for muon beams. The energy lost by muons traversing the gas absorber needs to be replaced by inserting RF cavities into the lattice. Replacing the substantial muon energy losses using RF cavities with reasonable gradients will require a significant fraction of the channel length be devoted to RF. However, to provide the maximum phase space cooling and minimal muon losses, the helical channel should have a short period and length. In this paper we shall examine three approaches to include RF cavities into the HCC lattice:
  1. Use higher frequency cavities that can be placed inside the magnetic channel,
  2. Interleave cavities between magnetic coil rings, and
  3. Place banks of RF cavities between segments of HCC channels.
Each of these approaches has positive and negative features that need to be evaluated in selecting the proper concept for including RF into the HCC system.
 
THPP055 Stochastic Cooling Developments for the HESR at FAIR 3491
 
  • H. Stockhorst, R. Maier, D. Prasuhn, R. Stassen
    FZJ, Jülich
  • T. Katayama
    CNS, Saitama
  • L. Thorndahl
    CERN, Geneva
 
  The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at the GSI in Darmstadt will be built as an anti-proton cooler ring in the momentum range from 1.5 to 15 GeV/c. An important and challenging feature of the new facility is the combination of phase space cooled beams with internal targets. In addition to electron cooling transverse and longitudinal stochastic cooling are envisaged to accomplish these goals. A detailed numerical analysis of the Fokker-Planck equation for longitudinal filter cooling including an internal target and intrabeam scattering has been carried out to demonstrate the stochastic cooling capability in the newly designed normal conducting ring lattice of the HESR. Theoretical predictions have been compared to experimental cooling results with internal targets at the COSY facility. Recent developments for the HESR stochastic cooling equipment will be discussed. The design of new high sensitive printed loop couplers and ring slot couplers for the (2-4) GHz range as well as prototype measurements with protons in the COSY accelerator will be presented.