A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Thomas, C. A.

Paper Title Page
TUPC007 Numerical and Experimental Investigation of the Contamination of X-ray Beam Position Monitors by Bending Magnet Edge Radiation 1053
 
  • C. Bloomer, G. Rehm, C. A. Thomas
    Diamond, Oxfordshire
 
  The details of an investigation into bending magnet edge radiation at Diamond are discussed, reviewing the effects of this radiation on X-ray Beam Position Monitoring (XBPM) equipment. For some time it has been recognized that there are difficulties using XBPMs for determining the centre of mass position of an undulator beam due to contamination from bending magnet radiation. While the geometry of the XBPM blades is designed to help reduce background dipole interference, this radiation is known to account for approximately 1% of the signal received, skewing the calculated beam position by several micrometres. We made detailed models of the bending magnet edge radiation using the SRW program and used Matlab to analyse the data. We present this model and compare our prediction to experimental results obtained at Diamond.  
TUPC086 Pinhole Camera Resolution and Emittance Measurement 1254
 
  • C. A. Thomas, G. Rehm
    Diamond, Oxfordshire
 
  Third generation synchrotron light source are characterised by a low emittance and a low emittance coupling. Some light sources are already proposing to operate with extremely low coupling close to 0.1% and thus vertical emittance approaching 1pm. We derive the limits for the emittance coupling measurement due to the resolution of the X-ray pinhole camera. We also show that it is possible to design a pinhole camera in order to push the limit resolution beyond 0.1% emittance coupling. We then illustrate our calculations with the example of Diamond and compare them with experimental data.  
TUPP020 Analysis of Collective Effects at the Diamond Storage Ring 1574
 
  • R. Bartolini, C. Christou, R. T. Fielder, M. Jensen, A. F.D. Morgan, S. A. Pande, G. Rehm, C. A. Thomas
    Diamond, Oxfordshire
 
  The Diamond storage ring has achieved its nominal operating current of 300 mA in multi-bunch mode and up to 10 mA in single bunch mode. Several collective instabilities have been observed and their dependence on machine parameters such as chromaticities, RF voltage and fill pattern have been investigated. We report here the analysis of the observed current thresholds and rise times of the instabilities compared with analytical estimates and tracking simulations. We also present the results of the MAFIA simulations performed with the aim of understanding the main contribution to the impedance of the ring and establishing a machine impedance database.