A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Teramoto, Y.

Paper Title Page
WEPD020 Stability of Superconducting Wire in Magnetic Field 2449
 
  • K. Ruwali
    GUAS/AS, Ibaraki
  • K. Hosoyama, K. Nakanishi
    KEK, Ibaraki
  • Y. Teramoto, A. Yamanaka
    Toyobo Research Institute, Shiga
 
  Main cause of premature quench in superconducting magnet is the heat generated due to superconducting wire motion. The wire motion occurs where electromagnetic force to conductors exceeds frictional force on surfaces of the conductors. Hence, frictional properties of the conductors and winding structures are important parameters for characterizing stability of the superconducting windings. An experimental setup was prepared to detect wire movement by observing spike in voltage of the superconducting sample wire. A detailed study was carried out in order to study superconducting wire motion under different experimental conditions such as varying applied load to specimen wire, back up field, varying the interface of superconductor and base material. The base materials used are polyimide film and Dyneema. The Dyneema has low frictional coefficient and negative thermal expansion. In the case of Dyneema, it is found that amplitude of voltage generated due to wire motion reduces and also relatively smooth motion of wire is observed. These effects are attributed to the low frictional coefficient. The experimental observation will be discussed in detail.