A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tecker, F.

Paper Title Page
MOPP010 Experimental Studies on Drive Beam Generation in CTF3 571
 
  • R. Corsini, S. Bettoni, S. Doebert, P. K. Skowronski, F. Tecker
    CERN, Geneva
  • C. Biscari, A. Ghigo
    INFN/LNF, Frascati (Roma)
  • Y.-C. Chao
    Jefferson Lab, Newport News, Virginia
 
  The objective of the CLIC Test Facility CTF3, built at CERN by an international collaboration, is to demonstrate the main feasibility issues of the CLIC two-beam technology by 2010. CTF3 consists of a 150 MeV electron linac followed by a 42 m long delay loop, an 84 m combiner ring and a two-beam test area. One key-issue studied in CTF3 is the efficient generation of a very high current drive beam, used in CLIC as the power source for the acceleration of the main beam to multi-TeV energies. The beam current is first doubled in the delay loop and then multiplied again by a factor four in the combiner ring by interleaving bunches using transverse deflecting RF cavities. The combiner ring and the connecting transfer line have been installed and put into operation in 2007. In this paper we give the status of the commissioning, illustrate the beam optics measurements, discuss the main issues and present the results of the combination tests.  
MOPP011 Fast Vertical Beam Instability in the CTF3 Combiner Ring 574
 
  • R. Corsini, D. Schulte, P. K. Skowronski, F. Tecker
    CERN, Geneva
  • D. Alesini, C. Biscari, A. Ghigo
    INFN/LNF, Frascati (Roma)
 
  The CLIC Test Facility CTF3 is being built at CERN by an international collaboration, in order to demonstrate the main feasibility issues of the CLIC two-beam technology by 2010. The facility includes an 84 m combiner ring, which was installed and put into operation in 2007. High-current operation has shown a vertical beam break-up instability, leading to high beam losses over the four turns required for nominal operation of the CTF3 ring. Such instability is most likely due to the vertically polarized transverse mode in the RF deflectors used for beam injection and combination. In this paper we report the experimental data and compare them with simulations. Possible methods to eliminate the instability are also outlined.