A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sterbini, G.

Paper Title Page
WEPD025 A Feasibility Study of Superconducting Dipole for the Early Separation Scheme of SLHC 2461
 
  • G. Sterbini, D. Tommasini
    CERN, Geneva
 
  In the framework of the LHC luminosity upgrade an early separation scheme is being studied for the final phase (L~1035 cm-2 s-1 with substantial changes in the IR). In this paper we compare a Nb3Sn and a Nb-Ti cos(θ) design: the aim is to explore the benefits and the limits of a compact solution with respect to the detector's constraints and the energy deposition issues. We propose to put the dipole system (cryostat and magnet) at a location starting at 6.8 m from the IP. The preliminary cross section, the achievable integrated field, the energy deposition on the magnet are presented and discussed.  
WEPP013 Increasing the Integrated Luminosity of SLHC by Levelling via the Crossing Angle 2554
 
  • J.-P. Koutchouk, G. Sterbini
    CERN, Geneva
  • K. Ohmi
    KEK, Ibaraki
 
  With an increase of luminosity by a factor of 10, the luminosity lifetime in an upgraded LHC would be limited to a few hours. Furthermore, schemes relying on stronger focusing and reduced beam current increase (which are intrisically less dangerous for machine protection) are penalized by a very short lifetime of around 2 hours. We show in this paper that the "early separation" scheme and/or crab cavities scheme lend themselves to a very efficient luminosity leveling scheme. It allows constant luminosity over many hours as well as a significant increase of integrated luminosity above the performance announced so far. This is achieved by adjusting the crossing angle rather than the beam size by means of a bump closed inside the experimental straight section, i.e. operationally simple. The initially large crossing angle reduces the beam-beam tune shift, allowing an increased beam current and higher performance for lower pile-up in the detector and lower energy deposition in the triplet. The impact of the required large Piwinski angle is investigated.