A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Soutome, K.

Paper Title Page
TUPC096 Development of Beam Loss Monitor for the SPring-8 Storage Ring 1284
 
  • Y. Shimosaki, K. Kobayashi, M. Oishi, M. Shoji, K. Soutome, Y. Taniuchi
    JASRI/SPring-8, Hyogo-ken
 
  A beam loss monitor using PIN photodiodes has been developed. To check its performance, we installed it at an in-vacuum insertion device and at the injection section in the SPring-8 storage ring. Information on the beam loss at these points will be useful for examining demagnetization of permanent magnets of insertion devices and for studying a mechanism of beam loss. A noise level at these points is however high due to stray synchrotron radiation, an induction voltage generated by pulsed injection magnets, etc. The beam loss signal is then picked up under a high noise condition. Experimental results with its countermeasure will be reported.  
WEPC076 Remote Tilt-control System of Injection Bump Magnet in the SPring-8 Storage Ring 2172
 
  • K. Fukami, C. Mitsuda, M. Oishi, M. Shoji, K. Soutome, H. Yonehara, C. Zhang
    JASRI/SPring-8, Hyogo-ken
  • M. Hasegawa, T. Nakanishi
    SES, Hyogo-pref.
  • T. Ohshima
    RIKEN/SPring-8, Hyogo
 
  The SPring-8 storage ring has four pulse-bump magnets to generate bump orbit for beam injection. Rotational error of the bump magnets around a beam-axis (tilt) induces the stored-beam oscillation in vertical direction due to horizontal error field. In the top-up operation, vertical perturbation of the stored-beam during beam injection is mainly produced by the tilt. We evaluated the tilt angle by measuring of the perturbation turn-by-turn using a single-pass BPM system and realigned bump magnets manually inside the accelerator tunnel. It was required to repeat the measurement and realignment processes two or three times for convergence. To correct the tilts smoothly, we developed a remote tilt-control system. The system consists of two fixed and one movable supports in vertical direction under each bump magnets. The movable support is driven by a stepper motor through 1/30 worm gear in the range of ±4 mrad with the accuracy of less than 0.1 mrad. By using this system, we succeeded complete on-beam reduction of the perturbation.  
THPC026 Measurement of Complex Coupling Driving Term of Linear Difference Resonance Using Turn-by-turn Beam Position Monitors 3035
 
  • M. Masaki, K. Soutome, S. Takano, M. Takao
    JASRI/SPring-8, Hyogo-ken
 
  X-Y emittance coupling is one of the important measures of beam quality in an electron storage ring for high brilliant light source. We have developed a method of measuring complex coupling driving term C of linear difference resonance using turn-by-turn beam position monitors (BPMs), assuming the perturbation theory with the single resonance approximation. Since both amplitude and phase of the driving term are derived, we can uniquely determine the strength of two-degree-of-freedom skew quadrupole magnets for correction of the linear resonance coupling. Before the correction, the driving term was measured by the developed method at the SPring-8 storage ring where small skew quadrupole components are distributed as error magnetic fields. On the other hand, the linear resonance coupling was corrected using the counter skew quadrupole magnets, the strength of which was adjusted to minimize vertical beam size near the linear difference resonance. The measured driving term C was broadly consistent with the counter term calculated from the adjusted strength of skew quadrupole magnets for the coupling correction.  
THPC070 Symmetry Restoration of the SPring-8 Storage Ring by Counter-sextupole Magnets 3149
 
  • K. Soutome, S. Daté, T. Fujita, K. Fukami, C. Mitsuda, A. Mochihashi, H. Ohkuma, M. Oishi, S. Sasaki, J. Schimizu, Y. Shimosaki, M. Shoji, M. Takao, K. Tsumaki, H. Yonehara, C. Zhang
    JASRI/SPring-8, Hyogo-ken
  • S. Matsui, H. Takebe, H. Tanaka
    RIKEN/SPring-8, Hyogo
 
  In the SPring-8 storage ring there are four magnet-free long straight sections of about 30m. These were realized in 2000 by locally rearranging quadrupole and sextupole magnets. In modifying the optics we took care of the periodicity of cell structure, especially of sextupole field distribution along the ring. To keep the periodicity high and hence the dynamic aperture large, we adopted a scheme in which "betatron phase matching" and "local chromaticity correction" are combined. In this scheme the dynamic aperture for on-momentum electrons is kept by the phase matching and that for off-momentum electrons is enlarged by the local chromaticity correction with weak sextupoles (SL). After modifying the lattice, we tried to recover the symmetry of the ring further and found that a harmful effect of nonlinear kick due to SL can be minimized by additional "counter-sextupole magnets" placed 180 degrees apart in horizontal betatron phase from SL. We installed such counter-sextupoles in every long straight sections and confirmed that the aperture was improved. In the paper we discuss these topics showing experimental data of injection efficiency, momentum acceptance, etc.  
THPC127 Filling of High Current Singlet and Train of Low Bunch Current in SPring-8 Storage Ring 3284
 
  • T. Nakamura, T. Fujita, K. Fukami, K. Kobayashi, C. Mitsuda, M. Oishi, S. Sasaki, M. Shoji, K. Soutome, M. Takao, Y. Taniuchi
    JASRI/SPring-8, Hyogo-ken
  • T. Ohshima
    RIKEN/SPring-8, Hyogo
  • Z. R. Zhou
    USTC/NSRL, Hefei, Anhui
 
  We performed the storage of high current singlet of 10mA/bunch and a train of bunches of 0.3mA/bunch under the bunch by bunch feedback systems with newly developed bunch current sensitive automatic attenuators with FPGA. The automatic attenuator reduces the signal level of the high current bunch by factor three to five to avoid the saturation of the feedback systems. With this system, the feedback systems suppress horizontal and vertical mode-coupling instabilities and raise the bunch current limit from 3.5mA/bunch to 12mA/bunch, and simultaneously the systems suppress the multi-bunch instabilities by resistive-wall and cavity higher order mode impedances. The improvement of the automatic attenuation system to fit to the final target of the bunch current in the train, 0.06mA/bunch, are being performed. The other problems which limit the filling patterns, such as saturation of the readout electronics of the beam position monitor system and the heating of vacuum components by high current bunches, will be briefly presented.