A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Simrock, S.

Paper Title Page
MOPD027 AMC-based Radiation Monitoring System 505
 
  • D. R. Makowski, A. Napieralski, A. Piotrowski
    TUL-DMCS, Łódź
  • S. Simrock
    DESY, Hamburg
 
  This paper reports a novel radiation monitoring system able to monitor gamma and neutron radiation in an accelerator tunnel in the nearest proximity of the electronic components of the control system. The monitoring system is designed as an Advanced Mezzanine Module (AMC) and it is dedicated for the Low Level Radio Frequency (LLRF) control system based on the Advanced Telecommunication Computing Architecture (ATCA). The AMC module is able to communicate with LLRF control system using both I2C interface defined by Intelligent Platform Management Interface (IPMI) standard and PCI Express. The measured gamma radiation dose and neutron fluence are sent to data acquisition computer using Ethernet network and stored in a database. Static Random Access Memory (SRAM) is applied as a neutron dosimeter. The principle of the detector is based on the radiation effect initiating the Single Event Upsets (SEUs) in a high density microelectronic SRAMs. A well known RadFET dosimeter is used to monitor gamma radiation.  
TUPC141 Concept and Implementation of the SC Cavity Resonance Frequency Monitor for the Digital RF Field Controller 1398
 
  • W. Jalmuzna, A. Napieralski
    TUL-DMCS, Łódź
  • S. Simrock
    DESY, Hamburg
 
  New generations of digital control systems offer large number of computation resources together with precise ADCs (analog to digital converters) and DACs (digital to analog converters) which can be used to generate almost any klystron driving signal. This gives the possibility to implement such features as digital SEL (self excited loop) and frequency sweep mode. They can be used to monitor resonance frequency of SC cavities. This information can be used by tuning system to adjust cavity tuner settings. Such functionality is valuable especially during the first RF station start up when the cavities may be detuned even by a large frequency. The paper presents the concept of such system and summarizes implementation and tests performed at FLASH facility (DESY, Hamburg).  
TUPC146 Real Time, Distributed, Hardware-software Simulation of Multicavity RF Station for LLRF System Development in FLASH and XFEL 1413
 
  • P. Pucyk, S. Simrock
    DESY, Hamburg
  • W. Jalmuzna
    TUL-DMCS, Łódź
 
  The paper describes the implementation of distributed (FPGA, DSP, GPP) system for simulation of multiple TESLA cavities together with high power distribution chain. The applied models simulate the system behavior with the performance close to the response time of the real RF station and cryomodules. Parametrized architecture of the simulator allows to find compromise between the features of the model and the available resources it can be implemented in. The results of driving the simulator using the FLASH LLRF system are presented and compared with the real measurements. Proposed solution is the important tool for LLRF system development and testing, and can be, in many cases, a replacement for the tests in the real superconducting test facilities reducing the development costs and time.  
TUPP001 Alternating Gradient Operation of Accelerating Modules at FLASH 1523
 
  • V. Ayvazyan, G. Petrosyan, K. Rehlich, S. Simrock, E. Vogel
    DESY, Hamburg
  • H. T. Edwards
    Fermilab, Batavia, Illinois
 
  The free electron laser in Hamburg (FLASH) is a user facility providing high brilliant laser light for experiments. It is also an unique facility for testing the superconducting accelerator technology for the European XFEL and the international linear collider (ILC). The XFEL offers several beam lines to users. Within limits given by the beam delivery system the bunch pattern and beam energy should be adjustable independent for each beam line suggesting a time sliced operation. The ILC is focused on the highest gradients possible. FLASH accelerates beam at 5 Hz repetition rate. During accelerator studies the operation of the last accelerating modules with 10 Hz and alternating rf pulses has been established proving the feasibility of a time sliced operation at the XFEL. The rf pulses synchronous to the 5 Hz rf pulses are used for FEL operation whereas the gradient of the remaining rf pulse can be chosen independently and is used for long term high gradient operation gaining experience for the ILC. The operation of two different gradients within a single rf pulse is also available. The paper describes the technical setup, the rf control performance and the operational experience.