A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shishido, T.

Paper Title Page
MOPC061 Progress in R&D Efforts on the Energy Recovery Linac in Japan 205
 
  • S. Sakanaka, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, Y. Honda, K. Hosoyama, M. Izawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, H. Kobayakawa, Y. Kobayashi, T. Matsumoto, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
  The future synchrotron light sources, based on the energy recovery linacs (ERL), are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. The ERL-based light sources are under development at such institutes as the Cornell University, the Daresbury Laboratory, the Advanced Photon Source, and KEK/JAEA. The Japanese collaboration team, including KEK, JAEA, ISSP, and UVSOR, is working to realize the key technologies for the ERLs. Our R&D program includes the developments of ultra-low-emittance photocathode DC guns and of superconducting cavities, as well as proofs of accelerator-physics issues at a small test ERL (the Compact ERL). A 250-kV, 50-mA photo-cathode DC gun is under construction at JAEA. Two single-cell niobium cavities have been tested under high electric fields at KEK. The conceptual design of the Compact ERL has been carried out. We report recent progress in our R&D efforts.  
MOPP044 Cavity Diagnostic System for the Vertical Test of the STF Baseline 9-cell Cavity at KEK 643
 
  • Y. Yamamoto, H. Hayano, E. Kako, S. Noguchi, M. Satoh, T. Shishido, K. Umemori, K. Watanabe
    KEK, Ibaraki
  • S.-I. Moon
    POSTECH, Pohang, Kyungbuk
  • H. Sakai, K. Shinoe
    ISSP/SRL, Chiba
  • Q. J. Xu
    IHEP Beijing, Beijing
 
  Four 9-cell cavities, which are TESLA-type 9-cell cavities, were developed and tested in KEK for the future ILC project. A simple cavity diagnostic system was introduced to search the heating spot and to detect the x-ray emission. It is composed of the carbon resistors and the PIN photo diodes. They were attached on the equator of the cell, around the HOM couplers and on the end flanges. They were very effective to search the heating spot and to detect the x-ray emission during the vertical tests. All cavities eventually had the heating spot around the equator in the final state of the vertical test. It is conceivable that the quality of the electron beam welding was somewhat poor, when the dumbbells were connected. On this February, a new vertical test facility will be completed in STF (Superconducting RF Test Facility). Six 9-cell cavities will be tested by using the new system for S0 plan, which goal is the higher accelerating gradient for ILC. The new temperature and x-ray mapping system and new DAQ system will be introduced. This paper reports the recent status in the new vertical test facility in KEK-STF.  
MOPP131 Cryomodule Tests of the STF Baseline 9-cell Cavities at KEK 868
 
  • E. Kako, H. Hayano, S. Noguchi, N. Ohuchi, M. Sato, T. Shishido, K. Watanabe, Y. Yamamoto
    KEK, Ibaraki
 
  The STF-Baseline superconducting cavity system, which includes four TESLA-type 9-cell cavities, input couplers and frequency tuners, has been developed for the future ILC project. A 6m-cryomodule including one of four STF-Baseline cavities was assembled for the initial test called the STF Phase -0.5. The first cool-down of the cryomodule and high power tests of the STF-Baseline cavity had been successfully carried at 2 K. The maximum accelerating gradient (Eacc,max) of 19.3 MV/m was achieved in a specific pulse width of 1.5 msec and a repetition of 5 Hz, (23.4 MV/m in a shorter pulse of 0.6 msec). The onset of x-rays radiation was observed at higher field than 15 MV/m, and the measured Qo value was about 5 x 109 at 18 MV/m in accompanied with field emission. The detuning angle of about -13 degrees at 18 MV/m was successfully compensated to nearly zero by a combined operation with both an offset detuning and an optimised applied voltage in the piezo element. String assembly of four STF-Baseline cavities has been stated in Jan. 2008. The second cryomodule test for 4 cavities, called the STF Phase -1.0, is scheduled in this early summer.  
MOPP144 The First Cool-down Tests of the 6 Meter-Long-Cryomodules for Superconducting RF Test Facility (STF) at KEK 892
 
  • N. Ohuchi, F. Furuta, K. Hara, H. Hayano, N. Higashi, Y. Higashi, H. Hisamatsu, K. Hosoyama, E. Kako, Y. Kojima, M. Masuzawa, H. Matsumoto, H. Nakai, S. Noguchi, T. Saeki, K. Saito, T. Shishido, A. Terashima, N. Toge, K. Tsuchiya, K. Yokoya
    KEK, Ibaraki
  • M. H. Tsai
    NSRRC, Hsinchu
  • Q. J. Xu
    IHEP Beijing, Beijing
 
  KEK is presently constructing the Superconducting RF Test Facility (STF) as the center of the ILC-R&D in Asia from 2005. In this project, KEK aims to get the manufacturing and operational experiences of the RF cavity and cryomodule toward the ILC, and two cryomodules have been developed. These cryomodules are 6 meter long and have 4 nine-cell cavities in each cryostat. The basic cross section designs of the cryomodules are almost same as the design of TESLA type-III, however, each cryostat has the different type of cavities, TESLA type and Low-Loss type. The tests for the cryomodules are planed to be performed at three steps. In the first test, measurements of the cryogenic performances of these cryomodules are the main objective. One nine-cell cavity was assembled in each cryostat and the cool-down of the two cryomodules was performed. In the following tests, the four nine-cell cavities will be assembled in each cryostat as the complete integration and the beam test will be performed. In this paper, we will report the design of the cryomodules and the cryogenic performances at the first cold test.