A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sertore, D.

Paper Title Page
MOPC072 Photocathode Studies at FLASH 232
 
  • S. Lederer, S. Schreiber
    DESY, Hamburg
  • J. H. Han
    Diamond, Oxfordshire
  • P. M. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
 
  Since several years, the DESY photoinjectors at FLASH and PITZ use cesium telluride photocathodes. One concern of operating an electron source with these cathodes is the degradation of the quantum efficiency (QE), starting from about 10 % to below 0.5 % during operation. To further understand this behavior the QE is monitored routinely. In this paper recent results from photocathode studies at FLASH are presented.  
MOPC075 Cs2Te Photocathode Robustness Studies 241
 
  • D. Sertore, P. M. Michelato, L. Monaco, C. Pagani
    INFN/LASA, Segrate (MI)
  • S. Lederer, S. Schreiber
    DESY, Hamburg
  • F. Stephan
    DESY Zeuthen, Zeuthen
 
  Cs2Te photocathodes are used as laser driven electron sources at FLASH and PITZ. Besides many aspects of their performances, their robustness to gas exposition and the effect of pollutants on photocathode properties, and indirectly on the photoemitted electrons, are a field still rather unexplored. In this article we present the results of controlled exposition of Cs2Te photocathodes to gases typical present in the UHV environment of an RF Gun with respect to spectral response (QE vs. wavelength), and QE uniformity. Moreover, a comparison between polluted cathodes and fresh ones during operation in an RF Gun is presented.  
MOPP154 Study of the High Pressure Rinsing Water Jet Interactions 910
 
  • D. Sertore, M. Fusetti, P. M. Michelato, C. Pagani
    INFN/LASA, Segrate (MI)
 
  High Pressure Rinsing (HPR) is an important step in the cleaning of Superconducting Cavities (SC). The understanding of the interaction of the high pressure water jet on the cavity wall is of primary importance for the optimization of this process for upcoming SC based projects like XFEL and ILC. In this paper, we extend our results obtained so far in different labs and present our studies on water jet interaction on oblique surfaces and the possible induced damages.