A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Serpico, C.

Paper Title Page
MOPC007 Status and Upgrade Program of the FERMI@ELETTRA Linac 79
 
  • G. D'Auria, A. O. Borga, S. Di Mitri, O. Ferrando, G. C. Pappas, A. Rohlev, A. Rubino, C. Serpico, M. Trovo, A. Turchet, D. Wang
    ELETTRA, Basovizza, Trieste
 
  FERMI@ELETTRA is a seeded FEL user facility under construction at Sincrotrone Trieste, Italy. It will use the existing normal conducting S-band linac and with the installation of seven accelerating sections received from CERN after the LIL decommissioning, will be operated at 1.2 GeV. After the successful commissioning of the new injector system of ELETTRA, the linac has been disconnected from the storage ring and now is being revised and upgraded with the installation of new important subsystems, i.e., a new photoinjector, bunch compressors, laser heater, additional accelerating structures, etc. Here a description of the upgrade program as well as the ongoing activities on the main parts of the machine are reported and discussed.  
MOPC008 The Impact of PSK Timing on Energy Stability of e-Beam at FERMI@ELETTRA 82
 
  • G. D'Auria, P. Delgiusto, M. M. Milloch, C. Serpico, D. Wang
    ELETTRA, Basovizza, Trieste
 
  The existing linac sections S1-S7 at ELETTRA will be upgraded for the FERMI@ELETTRA FEL project. These seven sections are 3/4 π-mode backward traveling wave (BTW) constant-impedance structures, powered by 45-MW klystrons (Thales TH 2132A) and with a SLED system to increase the RF peak power. Because of the strict requirement on the pulse-to-pulse beam energy stability (<0.1%) of the FERMI@ELETTRA project, the impact of phase shift keying (PSK), the timing of phase flipping, on beam energy needs to be revisited and evaluated. Here the results obtained with a simulation model built up by use of MATLAB simulink are present and discussed.