A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sekachev, I.

Paper Title Page
WEPP090 Accelerator Design for a 1/2 MW Electron Linac for Rare Isotope Beam Production 2728
 
  • S. R. Koscielniak, F. Ames, I. V. Bylinskii, R. E. Laxdal, M. Marchetto, A. K. Mitra, I. Sekachev, V. A. Verzilov
    TRIUMF, Vancouver
 
  TRIUMF, in collaboration with university partners, proposes to construct a megawatt-class electron linear accelerator (linac) as a photo-fission driver for radioactive ion beam production (RIB) for nuclear astrophysics studies and materials science. The design strategy, including upgrade path, for this cost-effective facility is elaborated. The 50 MeV, 10 mA, c.w. linac is based on TESLA/ILC super-conducting radio-frequency (SRF) technology at 1.3 GHz and 2K; and consists of an electron gun, buncher and capture sections, followed by 10 MeV and 40 MeV cryomodules containing one and four 9-cell cavities, respectively. Preliminary results from PARMELA beam dynamics simulations are presented. C. W. operation leads to challenges of large cryogenic heat load, input coupler power handling and beam loss mitigation similar to those encountered in ERL-based light sources. Unlike those sources there is no need for high beam brilliance, and a triode thermionic gun modulated at 1.3 GHz is employed; nor are short bunches required, and so the HOM excitation is modest. Many of the major sub-system components have been identified and where possible existing designs will be adopted.