A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sciarra, V.

Paper Title Page
TUPP027 Electron Energy Dependence of Scrubbing Efficiency to Mitigate E-cloud Formation in Accelerators 1592
 
  • R. Cimino, M. Commisso, T. Demma, A. G. Grilli, P. Liu, M. Pietropaoli, V. Sciarra
    INFN/LNF, Frascati (Roma)
  • V. Baglin
    CERN, Geneva
  • P. Barone, A. Bonanno
    INFN Gruppo di Cosenza, Arcavacata di Rende (Cosenza)
 
  Recently built and planned accelerators, base their ability to reach design parameters, on the capability to reduce Secondary Electron Yield (SEY) during commissioning, hence mitigating the potentially detrimental effects of e-cloud driven machine limitations. This SEY reduction (called "scrubbing"), is due to the fact that the electrons of the cloud, hit the vacuum chamber wall, modifying its surface properties and reducing its SEY. This minimise any disturbing effects of the e-cloud to the beam. "Scrubbing" has been studied only as a function of impinging electron dose. In reality SEY modifications are only studied by bombarding surfaces with 300-500 eV electrons, but no scrubbing dependence on the bombarding electron energy has ever been discussed. The actual energy of the electrons of the cloud hitting the wall in real accelerators has never been measured accurately, while simulations predict very low electron energies (<50 eV). For this reason and given the peculiar behaviour observed for low energy electrons*, we decided to study this dependence accurately. Here we present some preliminary results discussing eventual implications to machine commissioning procedures.

*R. Cimino et al. Phys. Rev. Lett 93, 14801 (2004).